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a b s t r a c t 

A highly noise-tolerant hybrid algorithm ( NTHA ) is proposed in this study for phase retrieval from a single- 

shot spatial carrier fringe pattern ( SCFP ), which effectively combines the merits of spatial carrier phase shift 

method and two dimensional continuous wavelet transform ( 2D - CWT ). NTHA firstly extracts three phase-shifted 

fringe patterns from the SCFP with one pixel malposition; then calculates phase gradients by subtracting the 

reference phase from the other two target phases, which are retrieved respectively from three phase-shifted fringe 

patterns by 2D - CWT ; finally, reconstructs the phase map by a least square gradient integration method. Its typical 

characters include but not limited to: (1) doesn’t require the spatial carrier to be constant; (2) the subtraction 

mitigates edge errors of 2D - CWT ; (3) highly noise-tolerant, because not only 2D - CWT is noise-insensitive, but 

also the noise in the fringe pattern doesn’t directly take part in the phase reconstruction as in previous hybrid 

algorithm. Its feasibility and performances are validated extensively by simulations and contrastive experiments 

to temporal phase shift method, Fourier transform and 2D- CWT methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The demodulation of phase information from fringe patterns ( FPs ) is 

one of the most significant techniques for modern optics, such as laser 

interferometry, electronic speckle pattern interferometry, digital holog- 

raphy, and FP projection, etc. [1,2] . 

Temporal phase shift ( TPS ) is a most widely used technique at op- 

tical shop and laboratory, which is a typical spatial-time-domain ana- 

lytical method [1,2] . It is well known to be highly accurate, high spa- 

tial resolution and computational inexpressive. However, it is vibration- 

sensitive, thus not suitable for vibration analysis or real time measure- 

ments. 

The demodulation of a single-shot FP is an important complement 

to the TPS , which just needs one FP to retrieve the phase map, making 

it considerably promising in some cases where just one FP could be cap- 

tured rather than multiple FPs , such as vibration analysis or real time 

measurement. Spatial carrier technique is often used for demodulating a 

single-shot FP , which usually adds large tilt in the FP , and then analyzes 

the spatial carrier fringe pattern ( SCFP ) to retrieve the phase by vari- 

ous algorithms, including mathematical transform method [3–14] and 

spatial carrier phase shift ( SCPS ) method [15–19] . 
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One famous mathematical transform algorithm is Fourier transform 

( FT ) method proposed by Takeda et al. [3,4] , which belongs to spatial- 

frequency analytical technique. FT suffers from some problems, e.g., 

spectral leakage because of the insufficient carrier frequency and edge 

error because of Gibbs effects, etc. To overcome the limitations of FT , 

time-frequency analysis techniques have been developed in recent years, 

such as the window FT ( WFT ) method [5–7] and the continuous wavelet 

transform ( CWT ) method [8–13] . WFT uses a short-time Fourier trans- 

form to analyze the FP locally by virtue of a window function (e.g., 

Gaussian function), and employs a ridge detecting technique to deter- 

mine the phase information, which makes WFT more robust and has a 

better anti-noise performance. Qian et al. have made plentiful researches 

on WFT [5–7] . CWT is known as a mathematical microscopy with flex- 

ible time-frequency analysis windows. It has been widely used in signal 

processing, as well as fringe analysis [8–13] . With the concept of the 

wavelet ridge, one dimensional CWT ( 1D - CWT ) technique was success- 

fully introduced to analyze different FPs . And 2D - CWT is believed to be 

more robust (e.g., noise-insensitive), and could recovery the corrupted 

data in FPs [11–13] , thus it has drawn more attention recently and var- 

ious researches have been made to promote CWT more efficient and ac- 

curate. Ma and Wang proposed a concept of cover map to enhance the 

computational efficiency of 2D - CWT by choosing a small number of dis- 

crete parameters instead of continuous dilation and rotation parameters 

[11–13] , which puts forward CWT in reality considerably. The 2D - WFT 

and 2D - CWT techniques have been proven by Huang et al. to be are 
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more tolerant to noise than 1D - WFT , 1D - CWT , FT and TPS methods 

[14] , because they always retrieve the phase information from the most 

reliable point (i.e., the ridge) of the local spectrum. 

The second category is spatial carrier phase shift (SCPS) method 

[15,16] , which extracts a set of phase-shifted FPs ( PSFPs ) from a signal 

SCFP with one pixel malposition, then retrieves the phase map by tra- 

ditional phase shift algorithms. However, most of existing SCPS meth- 

ods require a proper carrier frequency, such as 𝜋/2 rad/pixel; otherwise, 

residual errors will be produced. Recent improvements to SCPS could 

be found in Ref. [17–19] . 

A hybrid algorithm ( HA ) was proposed recently to retrieve the phase 

from a single shot SCFP , which essentially combines SCPS and FT [20] . 

It is composed of three steps: (1) Extract three PSFPs from a single SCFP ; 

(2) The wrapped phase map of each PSFP is retrieved by FT , then by 

a phase unwrapping and a subtraction operation, the phase shifts can 

be determined; (3) the phase map is retrieved by a least square phase 

shift algorithm. HA was found to be capable of mitigating edge error of 

FT , and it does not require the background and modulation amplitude 

of the SCFP to be constant. Simultaneously, it also does not need the 

carrier frequency to be known in prior. 

However, except for the three steps mentioned above, HA needs a 

dedicated filter to resist the noise in the SCFP for practical engineering, 

because the SCFP is directly used to retrieve the phase map in Step 

3, thus the noise would be delivered into the phase map. The filter is 

found to be slightly prone to degrade the accuracy when the filter are not 

designed properly, and it is hard to design a universal filter for all kinds 

of FPs . Therefore, this study devotes itself to enhance the robustness of 

HA , especially the tolerance to noise in SCFPs , and develops it to be a 

highly noise-tolerant hybrid algorithm ( NTHA ) circumventing the need 

of filter to the SCFP . The improvements lie in: 

(1) In Step 2 of previously HA , it was found that the phase shifts are 

also the phase gradients exactly. Thus in this study, the phase gra- 

dients are directly used to reconstruct the phase map in Step 3 by 

an improved least square integration method [21] . Therefore, NTHA 

doesn’t need the SCFP (with inevitable noise) to directly take part 

in the phase reconstruction of Step 3, thus it mitigates the influence 

of the noise, making NTHA more tolerant to noise. 

(2) In Step 2, a time-frequency analytical method ( 2D - CWT ) is intro- 

duced to take place of the spatial-frequency method ( FT ) used in 

previous HA , which exhibits to be more insensitive to noise, thus 

further enhance the robustness of NTHA to noise. 

The details of NTHA are elaborated in Section 2 . Its performances 

are investigated and validated by the simulations and contrastive exper- 

iments in Sections 3 and 4 , with comprehensive comparisons to TPS , FT 

and 2D - CWT . 

2. Procedures of the NTHA 

2.1. Step 1. Extract three PSFPs 

Step 1 of NTHA is generally same with previous HA , it extracts three 

PSFPs from a single SCFP . The intensity of a SCPF could be formulated 

as 

𝐼( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos ( 𝜙( 𝑥, 𝑦 ) + 𝑓 𝑥 𝑥 + 𝑓 𝑦 𝑦 ) (1) 

where, A ( x, y ) denotes the background intensity, B ( x, y ) denotes the 

modulating amplitude, and 𝜙( x, y ) is the phase map to be determined, 

f x f y are carrier frequencies in X and Y directions, respectively. Define 

the phase map with tilt as 

Φ( 𝑥, 𝑦 ) = 𝜙( 𝑥, 𝑦 ) + 𝑓 𝑥 𝑥 + 𝑓 𝑦 𝑦 (2) 

Then, the local phase gradient (with tilt) of X and Y directions: { 

𝐺 𝑥 ( 𝑥, 𝑦 ) = 𝜕 Φ( 𝑥, 𝑦 )∕ 𝜕 𝑥 = 𝜕 𝜙( 𝑥, 𝑦 )∕ 𝜕 𝑥 + 𝑓 𝑥 
𝐺 𝑦 ( 𝑥, 𝑦 ) = 𝜕 Φ( 𝑥, 𝑦 )∕ 𝜕 𝑦 = 𝜕 𝜙( 𝑥, 𝑦 )∕ 𝜕 𝑦 + 𝑓 𝑦 

(3) 

Three PSFPs can be extracted from the single SCPF with just one 

pixel malposition as: 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝐼 1 ( 𝑥, 𝑦 ) = 𝐼( 𝑥, 𝑦 ) = 𝐴 1 ( 𝑥, 𝑦 ) + 𝐵 1 ( 𝑥, 𝑦 ) cos (Φ( 𝑥, 𝑦 )) 
𝐼 2 ( 𝑥, 𝑦 ) = 𝐼( 𝑥 + 1 , 𝑦 ) = 𝐴 2 ( 𝑥, 𝑦 ) + 𝐵 2 ( 𝑥, 𝑦 ) cos (Φ( 𝑥, 𝑦 ) + 𝐺 𝑥 ( 𝑥, 𝑦 )) 
𝐼 3 ( 𝑥, 𝑦 ) = 𝐼( 𝑥, 𝑦 + 1) = 𝐴 3 ( 𝑥, 𝑦 ) + 𝐵 3 ( 𝑥, 𝑦 ) cos (Φ( 𝑥, 𝑦 ) + 𝐺 𝑦 ( 𝑥, 𝑦 )) 

(4) 

where, the phase shifts of I 2 ( x, y ) and I 3 ( x, y ) to I 1 ( x, y ), are exactly 

phase gradients in X and Y directions, respectively. Due to the back- 

ground and modulating amplitude are both slowly varying across the 

entire pupil, then we could assume 

𝐴 = 𝐴 1 ≈ 𝐴 2 ≈ 𝐴 3 , 𝐵 = 𝐵 1 ≈ 𝐵 2 ≈ 𝐵 3 (5) 

Eq. (4) could be summarized as 

𝐼 𝑛 ( 𝑥, 𝑦 ) = 𝐴 ( 𝑥, 𝑦 ) + 𝐵( 𝑥, 𝑦 ) cos (Φ( 𝑥, 𝑦 ) + 𝛿𝑛 ( 𝑥, 𝑦 )) (6) 

where, 𝛿n ( x, y ) is the phase shift of n th FP at ( x, y ), as Eq. (7) . 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝛿1 ( 𝑥, 𝑦 ) = 0 
𝛿2 ( 𝑥, 𝑦 ) = 𝐺 𝑥 ( 𝑥, 𝑦 ) 
𝛿3 ( 𝑥, 𝑦 ) = 𝐺 𝑦 ( 𝑥, 𝑦 ) 

(7) 

2.2. Step 2. Determine phase gradients 

Step 2 determines the phase gradients of the SCFP . CWT is intro- 

duced to retrieve the phase map in this study. CWT is a correlation 

process in which a large amount of similarity between the signal and 

a wavelet function would result in a large coefficient, and vice versa. 

That is, for a given scale at arbitrary position, the greater the modu- 

lus of wavelet coefficient is, the more similar the local frequency of the 

signal is to the vibration frequency of the wavelet function. 

For FP analysis, the 2D - CWT can be defined as: 

𝑊 (u , 𝑠, 𝜃) = < 𝐼, 𝜓 𝑢,𝑠,𝜃 > = 𝑠 − 𝑛 ∫𝑅 𝟐 
𝐼( 𝑥 ) 𝜓 ∗ ( 𝑠 −1 𝑟 − 𝜃(x − u) ) d 2 𝑥 

= 𝑠 𝑛 ∫𝑅 𝟐 
𝐼 ( 𝒙 ) ̂𝜓 

∗ ( 𝑠 𝑟 − 𝜃( 𝜔 )) 𝑒 𝑖 ⋅𝜔 ⋅u d 2 𝜔 (8) 

where, W is the wavelet transform coefficient, u is a translation param- 

eter, s is a scale factor, 𝜃 is a rotation angle, 𝑟 − 𝜃 is a rotation matrix 

corresponding to 𝜃, 𝜓 is the 2D wavelet function, 𝜔 is the frequency co- 

ordinate, n is the normalization parameter, the symbol “̂” designates 

a FT operation, and the symbol “∗ ” denotes the complex conjugate op- 

eration. One most widely used 2D Morlet wavelet is employed in this 

study, which is defined as: 

𝜓 𝑀 

( 𝑥 ) = exp ( 𝑖 𝜔 0 ⋅ 𝑥 ) exp 
( 

− 

|𝑥 |2 
2 𝜎2 

) 

(9) 

where, 𝜎 controls the width of wavelet function, and 𝜎 ∈ [0.5, 1] is 

recommended for general FPs . Then, after a series of deviations, the 

wavelet coefficient could be obtained, and we can determine the maxi- 

mum wavelet coefficient at a region that is called wavelet ridge. Then, 

the phase map could be: 

𝜙(u) = tan −1 
imag ( 𝑊 (u) ridge ) 
real ( 𝑊 (u) ridge ) 

(10) 

where, “imag ” and “real ” mean the imaginary and real parts of a com- 

plex value. Then, reshape 𝜙(u) to be same size with the FP , 𝜙( x, y ) 

could be determined. After that, the phase gradients can be determined 

as Eq. (11) . { 

𝐺 𝑥 ( 𝑥, 𝑦 ) = 𝜙2 ( 𝑥, 𝑦 ) − 𝜙1 ( 𝑥, 𝑦 ) 
𝐺 𝑦 ( 𝑥, 𝑦 ) = 𝜙3 ( 𝑥, 𝑦 ) − 𝜙1 ( 𝑥, 𝑦 ) 

(11) 
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