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a b s t r a c t

Recently, a cryptosystem based on the analysis of light in the focal area of a high numerical aperture
system has been proposed. A key element in the design of this device is the selection of the polarization
of the input beam. In this paper we analyze how polarization influences the performance of the encoded
message. In order to avoid attacks and enhance security, the system is assumed to work in photon-
counting illumination conditions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The study of optical systems for security purposes attracts great
interest. In 1994, Javidi and Horner published their seminal paper
on optical security [1]. Since then, the number of papers in the
area has been growing year after year (see, for instance, [2,?,4] and
references therein). The Double Random Phase Encoding (DRPE)
original approach [5] is based on a f4 system within the frame-
work of the scalar propagation theory. Later, the use of polarized
light became widespread as more degrees of freedom are added to
the cryptosystem [6,7]. Moreover, the combined use of polari-
metric techniques with pattern recognition methods entitle to
address complex problems in security, including classification or
counterfeiting validation [8,9]. Several authors have demonstrated
vulnerabilities in DRPE-based systems [10–13] but actually, solu-
tions to avoid weakness and possible attacks have been proposed
[14,15]. In particular, those systems operating in low light condi-
tions have been demonstrated very efficient and difficult to broke
[16,17]. They are particularly appropriate in validation
applications.

Recently, we proposed a cryptosystem based on the use of
highly focused fields [18]. Despite the fact the optical setup can be
complex and difficult to carry out, focused beams present some
advantages that justify their use in cryptography. Note that fields
in the focal area display a non negligible amount of energy in the
direction of propagation of the wave. This component is very weak

and it is completely embedded by the transverse part of the wave.
In [19] we discussed how to encode and encrypt information in
the longitudinal component of the beam. Moreover, if the trans-
verse part of the wave is recorded, the information encoded can be
accessed by means of the Gauss law.

A key element in the design of an optical encryption system
based on highly focused fields is the selection of the polarization
of the input beam. The objective of this paper is to analyze how
polarization influences the performance of these systems. The
paper is organized as follows: in Section 2 we review basic con-
cepts in the theory of propagation of light in the focal area and
how information can be encoded and encrypted in the long-
itudinal component of a highly focused beam. In Section 3 we
study how input polarization (circular, spiral, radial) affects the
transverse and the longitudinal parts of the field. These results are
used to analyze the performance of the encrypted signal. In order
to avoid attacks, it is assumed the systems works in photon-
counting illumination conditions. Finally, the conclusions are
presented in Section 4.

2. Background: encoding information in the longitudinal
domain

The Richards and Wolf equation provides the framework to
describe the vector behaviour of an electromagnetic field

= ( )E E EE , ,x y z in the focal area [20]:
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where ∞E is electromagnetic field at the Gaussian sphere of re-
ference, θ0 is the semi-aperture angle, k is the wavenumber and A
is a constant; θ and φ, and r and ϕ are the coordinates at the
Gaussian sphere and at the focal plane respectively. See Fig. 1 for
details.

∞E is described as the combination of projections ·E e0 1 and
·E ei

0 2 of the input field E0 on the radial ( e1) and the azimuthal
directions (e2), i.e.:

( )θ= · + · ( )∞E E e e E e ecos , 2
i

0 1 1 0 2 2

where vectors e1, e2 and ei
2 are described by:

φ φ φ( ) = ( − ) ( )e sin , cos , 0 3a1

φ φ φ( ) = ( ) ( )e cos , sin , 0 3bi
2

φ θ θ φ θ φ θ( ) = ( ) ( )e , cos cos , cos sin , sin , 3c2

and the wave-front vector s is defined as:

( )α β γ θ φ θ φ θ= ( ) = − ( )s , , sin cos , sin sin , cos . 4

Notice that e1, e2 and s form a triad of mutually orthogonal right-
handed system of unit vectors. In particular, ∞E is normal to the
wave-front vector s, · =∞E s 0. Eq. (1) can be rewritten in a more
compact way using Fourier transforms. After some algebra, Eq. (1)
takes the form (see [21] for details):
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where f is the focal length of the microscope objective used to
focus the beam, λ is the wavelength and FT stands for the Fourier
transform operator. The subindex λf indicates that spatial fre-
quencies are scaled accordingly. Developing Eq. (2), the long-
itudinal component ∞E z reads:

( )θ φ φ θ= + ( )∞E E Ecos cos sin sin . 6z x y0 0

Interestingly, this expression provides a constrain between the
input field components = ( )E EE , , 0x y0 0 0 , and ∞E z . Using Eqs.
(2) and (5), the longitudinal component Ez of the focused field is
written in terms of E0x and E0y:

φ φ θ
θ

+ = [ ] ( )λ
−E E Ecos sin

cos
sin

FT . 7x y f z0 0
1

This formula shows how the z-component of a focused field is
related to the transverse field distribution of the illuminating
beam. We use this equation to encode information in the long-
itudinal component Ez. This equation is a necessary condition that
has to be fulfilled, but the relationship between E0x and E0y is not
set.

Since the longitudinal component cannot be easily isolated by
optical means, Ez can be an appropriate container for encoding
information. On the other hand, Ez can be accessed numerically
using the Gauss law, ∇ =E 0, which is equivalent to the condition

· =∞ sE 0. Because | | =s 1, Ez can be determined by using the fol-
lowing equation [22]:
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Encryption is performed as follows. Let t be the message to be
encrypted and M1 and M2 two random phase masks. If the signal
encoded in the longitudinal component is equivalent to the ob-
tained using DRPE, then = [ ]λ λ⎡⎣ ⎤⎦E M M tFT FTz f f2 1 . Note that other
encoding methods can be used. The components of the encoded
input field ( )E E, , 0x

e
y

e
0 0 are related by means of Eq. (7):
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In order to prevent attacks, the system emulates low light condi-
tions. The transverse components of the encrypted focused field Ex

e

and Ey
e are binarized using the photon counting model [16]. A

description of imaging systemworking in low light conditions [23]
can be found elsewhere [16,24–27]. Using the Poisson law, the
binary version of the encrypted x-component reads:
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where Np is the predetermined number of photon counts in the
entire scene and Iex is the total irradiance of the encrypted com-
ponent x (see Eq. (16)). Component Ey

e ph is obtained using the
same approach:
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Using the correct key M2 and the Gauss law [8], the decrypted
photon-counting signal tph is obtained [19].

It is worth to point out that encryption in the longitudinal

Fig. 1. Coordinate systems: left: entrance pupil, center: Gaussian reference sphere, right: focal plane.
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