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a  b  s  t  r  a  c  t

A  mechanical  resonator  based  on torsional  resonance  has  been  fabricated  in  our  facilities  to  sense  infrared
radiation.  Actuation  and  detection  are  both  electrostatic.  Reaching  phonon  noise  is  highly  desirable  in
order  to get  low  noise  uncooled  infrared  detectors.  Therefore  a high  dynamic  range  has  to  be  reached
to  increase  as  much  as  possible  the  overall  signal  to noise ratio  and minimize  the  contribution  of ampli-
tudes  noises  (thermomechanical  or electrical)  to frequency  noise.  The  dimensions  of  resonator  body  are
similar to  most  clamped-clamped  NEMS  and  our devices  are  thus  also  greatly  affected  by  nonlineari-
ties.  We  present  here  a nonlinear  model  for mechanical  behavior  around  fundamental  mode  resonance
taking  account  of both  mechanical  and  electrostatic  nonlinearities.  The  model  correctly  reproduces  the
nonlinear  behavior  observed  for different  resonator  designs.  We  experimentally  observe  on  some  devices
a compensation  of  hardening  effects,  allowing  a linear  operation  of  torsion  angle  up  to  13◦. The  model
provided  in  this  work  allows  an engineering  strategy  in  order  to design  high  linear  dynamic  range  for
fundamental  torsional  mode.

©  2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

While Nano ElectroMechanical Sensors (NEMS) emerge in many
applications [1–3], the assessment of expected performance of res-
onant mechanical sensors becomes more and more critical. Indeed,
the small volume involved in NEMS motion makes their mechani-
cal response extremely sensitive to nonlinearities, affecting directly
the linear dynamic range (DR in dB) of operation. In the case of
time references or sensors, the frequency stability needs to be as
high as possible. For short integration time – such as in imaging
applications – the noise, �y, is inversely proportional to the output
amplitude DR [4]:

�y = 1
2Q

1
SNR

(1)

Where Q is the quality factor of the given eigenmode and SNR the
signal-to-noise ratio in terms of amplitude (mechanical or elec-
trical). Therefore, sources of nonlinearities must be identified and
modeled to be as predictable as possible to fabricate low noise
resonators. Many studies on flexural nonlinearities in mechani-
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cal resonators [5–9] can be found in the literature, but we  notice
a lack of fundamental studies on torsional eigenmodes. Existing
works have shown than the limit in the DR, set by the critical
amplitude either for stability reasons, which can be overcome by
closed-loop control [10], or noise mixing in the carrier side bands,
can be overcome by coupling two different vibrational modes [11]
or by nonlinearity cancellation [6,7,12].

A nonlinear model is therefore of paramount importance in
order to enhance the frequency stability, and thus the sensing per-
formance, of torsional resonators. These devices were extensively
studied as very sensitive magnetometers since external torque
greatly influences the fundamental mode [13–15]. Mirror applica-
tions have also driven numerous studies on static [16] or dynamic
[17] torsional motion.

From a mechanical point of view, torsional motion takes advan-
tage of minimizing the beam stretching leading quickly to the
nonlinear regime of the beam [5,18]. Therefore, we  believe that
a higher DR will occur by using torsional modes instead of flexural
motion since a stiffening of the beam is usually not observed in tor-
sional motion [8,13,14]. However, it is known that both the residual
and the shear stress induce an elongation of the outer fibers of the
beam. This leads to an additional stress that increases the total
beam resistance to torsion [16,20]. These effects become impor-
tant in thin films resonators [21]. Recent investigations have also
shown that a bending of the torsional arms – induced by external
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actuation such as electrostatic [16], thermal [22] or piezoelectric
transductions [17] – increases the stretching energy in the torsional
arm and, as a result, the nonlinear hardening effect in torsional
stiffness.

Effectively, the DR of our stiffest devices is limited by harden-
ing nonlinearities whereas electrostatic transduction softens the
structure. Remarkably, we observe a cancellation of the first non-
linear terms of hardening sources in some devices which leads to
a high linear DR of the deflection of the micro-mirror, up to 13◦

for the best devices. We  present in this work a model describ-
ing both behaviors when most studies focus on either hardening
[16,22] or softening behavior [13,19]. The model is compared with
experimental characterizations on devices designed with different
torsional stiffnesses − in order to test different thermal insulations
to enhance long infrared radiation thermal sensing (LWIR, 8–14 �m
range). In that context, the resonator size needs to be further shrunk
and the model proposed here will enable the prediction of nonlin-
ear behaviors of future devices and therefore an outlook of their
DR.

2. Fabrication of torsional resonators

We  initially design our resonator to fit the bolometer require-
ments, especially the thermal isolation from substrate. Thus, our
sensor is isolated by long (8.6 �m)  and narrow (250 nm)  arms. Tor-
sional beams perpendicular to the insulating arms are Lr = 3.8 �m
long and wr = 250 nm wide, thereby minimizing thermal conduc-
tion losses (Fig. 1a). A 150 nm (tr) layer of amorphous silicon is
used to stiffen the whole structure (arms and paddle). Electrodes
are positioned 2 �m below the paddle to build an optical Fabry-
Perot resonator enhancing the absorption of 8–14 �m incident EM
waves. We  also design a stiffer resonator with shorter torsion arms
(Lr = 1.5 �m).  The fabrication process is described in [23].

3. Nonlinear mechanical behavior modeling

3.1. Linear description

For clarity purposes, a cross section of our device is sketched up
in Fig. 1b. x1 accounts for the electrodes separation on the substrate.
Lp, the transverse length, is not depicted here. The suspended mem-
brane is biased with a polarization voltage Vb in order to read the
capacitive signal between moving and fixed electrodes, whereas
the actuation is done by biasing the other fixed electrode with an
VAC actuation voltage

A heterodyne detection scheme is experimentally used to over-
come capacitive feedthrough (Fig. 1c) [24]. The capacitive signal
is amplified through a home-made circuit, using a capacitance
CC2V = 1 pF as negative feedback (Fig. 1c), so that the motional signal
(at frequency �ω) is expressed as:

|Vout (�ω) | = Vb

(
�C
(

�
)

− �C
(
−�
))

2CFB
(2)

Where �C
(

�
)

= C0 − Cd

(
�
)

and Cd the detection capacitance. To
clarify this approach (especially the electrical torque expression),
an 1f actuation is assumed in the following calculations: we sup-
pose an actuation voltage VACcos (ωt) and a continuous bias voltage
Vb, so that the effective force driving the NEMS at resonance is pro-
portional to 2VACVb. The transposition for heterodyne experimental
set-up is straightforward and will be given before comparing mod-
eling results with experimental characterizations. The paddle angle
is governed by Eq. (3):

J�̈ + b�̇ + ��� = Te (3)

Te = 1
2

dCa

d�
(VAC cos (ωt) − Vb)2 + 1

2
dCd

d�
Vb

2 (4)

Where J is the inertia moment of the paddle and b the damping
coefficient. �� is the equivalent torsional spring constant of both
torsional beams, approximated by [20]:

�� = E

(1 + �)
trw3

r

Lr

(
1
3

− 0.21
tr

wr

(
1 − 1

12
t4
r

w4
r

))
(5)

Considering a paddle length Wp � x1, and sin
(

�
)

∼� << �max

(small amplitudes approximation), both capacitances lead to:

Ca

(
�
)

≈ −C0
�max

�
ln

(
1 − �

�max

)
(6)

Cd

(
�
)

≈ C0
�max

�
ln

(
1 + �

�max

)
(7)

C0 is the capacitance at rest (0.18fF) and �max the maximum geo-
metric angle �max∼sin

(
�max

)
= g/

(
Wp/2

)
= 21◦. Taylor’s expan-

sions of capacitances and associated derivatives according to � have
been performed up to the 3rd order in �. It leads to the following
expression for the detection capacitance:

Cd

(
�
)

∼C0

(
1 −

3∑
k=1

(−1)k+1

k + 1

(
�

�max

)k
)

(8)

3.2. Nonlinear differential equation

Furthermore, using the Taylor’s expansions of derivatives of
C
(

�
)

, we  discriminate in Te the harmonic driving torque (propor-
tional to cos (ωt)) from the nonlinear restoring terms (proportional
to �k):

Te = −C0

2
1

2�max
2VACVb cos (ωt) + C0

2

3∑
k=1

k + 1
k + 2

(
V2

AC

2
+ V2

b + (−1)k+1V2
b

)
�k

�k+1
max

+ o
(

�3
)

(9)

The 2ω driving term which appears when expanding Eq. (3) is
not accounted here. Indeed, our heterodyne detection scheme does
not make appear this harmonic term as the torque expression reads
in this particular case:

Te = 1
2

∂Ca

∂�
(VAC cos((2ω − 	ω)t) − Vb cos((ω − 	ω)t))2 + 1

2
∂Cd

∂�
(Vb cos((ω − 	ω)t))2

⇔ Te = 1
2

{

∂Ca

∂�

V2
AC

2
+ (

∂Ca

∂�
+ ∂Cd

∂�
)

V2
b

2

∂Ca

∂�
(

V2
AC

2
cos((4ω − 2	ω)t))

− ∂Ca

∂�
VAC Vb(cos((3ω − 2	ω)t) + cos(ωt))

V2
b

2
cos(2((ω − 	ω)t))(

∂Ca

∂�
+ ∂Cd

∂�
)

(10)

On the contrary, with a f/2 actuation and a direct detection
scheme, the 2ω driving term can lead to a superharmonic reso-
nance [8] which can be used to enhance the DR of the resonator
when simultaneous resonances occur [9]. The presence of a periodic
oscillation in the resonator stiffness at exactly twice the resonance
frequency (with a 1f actuation and a direct detection scheme) can
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