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a b s t r a c t

This paper addresses the study of the integral-type approximate controllability of linear parabolic integro-
differential equations. This new controllability is defined by imposing some additional integral-type
constraints on the usual approximate controllability and therefore, can be used to keep the state close
to the target. The paper is concerned with a special choice of integral kernels, which are multiples of the
same exponential function. We reduce the problem of new controllability to the obtention of a unique
continuation property for the suitable adjoint system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and main results

Let Ω ⊂ RN (N ≥ 1) be a bounded domain with smooth
boundary ∂Ω and ω ⊂ Ω be a nonempty open set. Let T > 0 be
given. We shall denote by Q the cylinderΩ × (0, T ) and byΣ the
lateral boundary ∂Ω× (0, T ). In this paper, we study the following
parabolic integro-differential equation:⎧⎪⎨⎪⎩

yt −∆y =

∫ t

0
L(t − s)y(x, s) ds + χωu, (x, t) ∈ Q ,

y(x, t) = 0, (x, t) ∈ Σ,

y(x, 0) = y0(x), x ∈ Ω.

(1.1)

Here, the functions y and u are respectively the state variable and
the control variable, L ∈ L2(0, T ) is the integral kernel, and χω
denotes the characteristic function of the set ω. The Eq. (1.1), as an
important class of diffusion equations, can describe the physical
problems in many fields such as population dynamics and heat
conduction in materials with memory (see [1–4]).

Assume that y0 ∈ L2(Ω) and u ∈ L2(ω × (0, T )). By Galerkin
method (see [5]), we can obtain that the system (1.1) admits a
unique solution y ∈ C([0, T ]; L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Moreover,
there exists a constant C > 0 such that

max
t∈[0,T ]

∥y(·, t)∥L2(Ω) ≤ C
(
∥y0∥L2(Ω) + ∥u∥L2(ω×(0,T ))

)
.

Our main interest concerns the approximate controllability of
the linear system (1.1). The goal is to prove the existence of a
control u which steers the state variable and the integral term to
the neighborhood of two given final configurations at the time T ,

E-mail address: zhouxiuxiang@163.com.

respectively. More precisely, the system (1.1) is said to be approx-
imately controllable at time T if, for any y0 ∈ L2(Ω), y1 ∈ L2(Ω)
and ε > 0, there exists u ∈ L2(ω × (0, T )) such that the solution y
of (1.1) satisfies

∥y(·, T ) − y1∥L2(Ω) ≤ ε.

The system (1.1) is said to be integral-type approximately control-
lable (with the integral kernel L̃(·) ∈ L2(0, T )) at time T if, for any
y0 ∈ L2(Ω), (y1, y2) ∈ L2(Ω) × L2(Ω) and ε > 0, there exists
u ∈ L2(ω × (0, T )) such that the solution y of (1.1) satisfies

∥y(·, T ) − y1∥L2(Ω) ≤ ε,

∫ T

0
L̃(T − s)y(·, s) ds − y2


L2(Ω)

≤ ε.

Therefore, the integral-type approximate controllability is defined
by imposing some additional integral-type constraints on the ap-
proximate controllability.

Let us recall the approximate controllability for the classical
parabolic equation:{
θt (x, t) = ∆θ (x, t) + χωu(x, t), (x, t) ∈ Q ,
θ (x, t) = 0, (x, t) ∈ Σ,

θ (x, 0) = θ0(x), x ∈ Ω.
(1.2)

It is well known that for any given T > 0 and non-empty open
subset ω ofΩ , the system (1.2) is approximately controllable (see,
for instance, [6–9] and the rich references therein). Moreover, the
state of (1.2) at time T may be kept close to the special target zero
by letting u(x, t) = 0 for a.e. (x, t) ∈ Ω × (T ,+∞).

Controllability problems for the parabolic integro-differential
equations have been studied in recent years by many authors
(see, for instance, [10–14]). When the integral kernel is locally
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integrable and completely monotone, Barbu and Iannelli [15] ob-
tained the approximate controllability of some parabolic integro-
differential equation.More recently, in [16] the authors considered
the following integro-differential equation:

yt = ay +∆y +

∫ t

0
M(t − s)∆y(x, s) ds + χωu,

where M(·) is of class C1. They proved that the system is approxi-
mately controllable.

Unlike the classical parabolic equation (1.2), because of the
appearance of the integral term

∫ t
0 L(t − s)y(x, s) ds, the state of

the system (1.1) at time T might not be kept close to the target
zero by letting u(x, t) = 0 for a.e. (x, t) ∈ Ω × (T ,+∞). To
guarantee this, in this paper we study the integral-type approx-
imate controllability property of (1.1). The main results of this
paper state that the integral-type approximate controllability of
the system (1.1) holds for some integral kernel L̃(·). To the best
of our knowledge, the problem of new approximate controllability
has not been addressed yet.

Without loss of generality we can assume y0 = 0.Wewill use C
to denote a generic positive constant which may be different from
line to line. ⟨·, ·⟩ will stand for the usual scalar product. In what
follows, we choose

L(t) = b1eat , L̃(t) = b2eat ,

where b1 ̸= 0, b2 ̸= 0 and a ∈ R. Now, we are ready to formulate
the main results of this work.

Theorem 1.1. For any given T > 0, the system (1.1) is integral-type
approximately controllable (with the integral kernel b2ea·) at time T .

Theorem 1.2. Let a < 0, b1 < 0 and y1 ∈ H2(Ω) ∩ H1
0 (Ω) be such

that −∆y1 +
b1
a y1 = 0, then for any ε > 0, there exists a control

u ∈ L2(ω × (0, T )) such that the corresponding solution y of (1.1)
satisfies

∥y(·, t) − y1∥L2(Ω) ≤ Cε, ∀ t > T .

The rest of this paper is organized as follows. In Section 2,
we present the proof of Theorem 1.1. Here, the key point is to
prove that the adjoint system associated to our control problem
(1.1) satisfies a unique continuation property. We give the proof of
Theorem 1.2 in Section 3.

2. Proof of Theorem 1.1

This section is devoted to prove Theorem 1.1. First of all, we
reduce the integral-type approximate controllability of the system
(1.1) to a unique continuation property of the suitable adjoint
system. Let us introduce the following adjoint system of (1.1):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϕt +∆ϕ +

∫ T

t
L(s − t)ϕ(x, s) ds

+ L̃(T − t)zT = 0, (x, t) ∈ Q ,
ϕ(x, t) = 0, (x, t) ∈ Σ,

ϕ(x, T ) = ϕT (x), x ∈ Ω,

(2.1)

where (ϕT , zT ) ∈ L2(Ω) × L2(Ω). We have the following result.

Lemma 2.1. The system (1.1) is integral-type approximately control-
lable at time T if and only if (0,0) is the only pair (ϕT , zT ) ∈ L2(Ω) ×

L2(Ω) for which the solution ϕ of (2.1) satisfies ϕ = 0 in ω × (0, T ).

Proof. For any u ∈ L2(ω × (0, T )), we define G : L2(ω × (0, T )) →

L2(Ω) × L2(Ω) as follows:

Gu =

(
y(·, T ),

∫ T

0
L̃(T − t)y(·, t) dt

)
,

where y is the solution of (1.1) with u ∈ L2(ω × (0, T )). Obviously,
the linear system (1.1) is integral-type approximately controllable
at time T if and only if the range of G is dense in L2(Ω) × L2(Ω).
By the duality argument (see [17]), it is also equivalent to that
KerG∗

= {(0, 0)}. Let us multiply by ϕ the equation satisfied by
y and let us integrate over Q . Taking into account that ϕ satisfies
(2.1) and y0 = 0, we obtain∫ T

0

∫
ω

uϕ dxdt

=

∫∫
Q

(
yt −∆y −

∫ t

0
L(t − s)y(x, s) ds

)
ϕ(x, t) dxdt

=

∫
Ω

y(x, T )ϕT (x) dx +

∫∫
Q
L̃(T − t)zT (x)y(x, t) dxdt.

(2.2)

Thus, we have that

G∗(ϕT , zT ) = χωϕ, ∀ (ϕT , zT ) ∈ L2(Ω) × L2(Ω).

Consequently, the system (1.1) is integral-type approximately con-
trollable at time T if and only if ϕ = 0 in ω × (0, T ) implies
ϕT = zT = 0. This completes the proof of Lemma 2.1. □

Next, we show the proof of Theorem 1.1.

Proof of Theorem 1.1. First, we give the representation formula
of the solution ϕ of (2.1). Let {λj}

∞

j=1 be the eigenvalues of −∆with
homogeneous Dirichlet boundary conditions satisfying

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞

and {φj}
∞

j=1 the corresponding eigenfunctions, constituting an or-
thonormal basis of L2(Ω). Let (ϕT , zT ) ∈ L2(Ω)× L2(Ω) be given by
ϕT =

∑
∞

j=1ϕT ,jφj, zT =
∑

∞

j=1zT ,jφj. For any (x, t) ∈ Q , put

w(x, t) =

∫ T

t
ea(s−t)ϕ(x, s) ds.

Then w satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
wtt + awt +∆wt + a∆w − b1w

= b2ea(T−t)zT , (x, t) ∈ Q ,
w(x, t) = 0, (x, t) ∈ Σ,

w(x, T ) = 0, wt (x, T ) = −ϕT (x), x ∈ Ω.

(2.3)

We may represent the solution w of (2.3) as

w(x, t) =

∞∑
j=1

αj(t)φj(x), ∀ (x, t) ∈ Q , (2.4)

where αj satisfies⎧⎪⎨⎪⎩
α′′

j (t) + aα′

j (t) − λjα
′

j (t) − aλjαj(t) − b1αj(t)

= b2ea(T−t)zT ,j, t ∈ (0, T ),
αj(T ) = 0, α′

j (T ) = −ϕT ,j.

(2.5)

For any j ∈ N, denote by µ±

j the roots of the following quadratic
equation:

µ2
− (λj − a)µ− (aλj + b1) = 0.

For simplicity, assume that (λj + a)2 + 4b1 ̸= 0. Then we have

µ±

j =
(λj − a) ±

√
(λj + a)2 + 4b1
2

.
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