
Systems & Control Letters 106 (2017) 40–46

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Finite-parameter feedback control for stabilizing the complex
Ginzburg–Landau equation
Jamila Kalantarova, Türker Özsarı *
Department of Mathematics, Izmir Institute of Technology, Urla, İzmir 35430, Turkey

a r t i c l e i n f o

Article history:
Received 4 November 2016
Received in revised form 12 May 2017
Accepted 7 June 2017

Keywords:
Ginzburg–Landau equations
Feedback stabilization
Finite volume elements
Finitely many Fourier modes
Nodal observables

a b s t r a c t

In this paper, we prove the exponential stabilization of solutions for complex Ginzburg–Landau equations
using finite-parameter feedback control algorithms, which employ finitely many volume elements,
Fourier modes or nodal observables (controllers). We also propose a feedback control for steering so-
lutions of the Ginzburg–Landau equation to a desired solution of the non-controlled system. In this latter
problem, the feedback controller also involves the measurement of the solution to the non-controlled
system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study the complex Ginzburg–Landau equation
(CGLE), which is a mathematical model to describe near-critical
instability waves such as a reaction–diffusion system near a Hopf-
bifurcation. Specific applications of this equation include nonlinear
waves, second-order phase transitions, superconductivity, super-
fluidity, Bose–Einstein condensation and liquid crystals. See [1]
and the references therein for an overview of several phenomena
described by the CGLE.

The general form of the CGLE is written as

ut − (λ + iα)∆u + (κ + iβ)|u|pu − γ u = 0, x ∈ Ω, t > 0, (1.1)

where u denotes the complex oscillation amplitude, andβ ∈ R and
α ∈ R are the (nonlinear) frequency and (linear) dispersion param-
eters, respectively. The constants λ and κ are assumed to be strictly
positive.Ω is a general domain inRn and p > 0 is the source-power
index. (1.1) can be associatedwith Dirichlet, Neumann, periodic, or
mixed boundary conditions depending on the physical situation.
Note that Eq. (1.1) simultaneously generalizes the real reaction–
diffusion equation and the nonlinear Schrödinger equation, which
can be obtained in the limit as the parameter pairs (α, β) and (λ, κ)
tend to zero, respectively.

It is well-known that if the Benjamin–Feir–Newell stability cri-
teria (αβ > −1) fail to hold, then CGLE might possess unstable
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solutions such as the trivial solution and chaos might be observed.
The Stoke’s solution u(x, t) ≡

√
γ

κ
e−i βγ

κ t is another example of a
space independent periodic solution (for p = 2) whose perturba-
tions might be unstable [2]. Motivated by these observations, we
want to study the stabilization problem for the CGLE. We will be
interested only in the case γ > 0, since otherwise solutions already
decay to zero, and there is no room for instability.

Controlling chaotic behavior has been one of the major sub-
jects in the theory of evolution equations, and many approaches
have been developed. One such approach involves using local or
global interior control terms. Others involve external (boundary)
controls, especially in models where it is difficult or impossible
to access the medium. Using feedback type controls is a common
tactic to suppress the chaotic behavior and bring solutions back
to a stable state. However, non-feedback type controls (open loop
control systems) are also used for steering solutions to or near a
desired state. Exact, null, or approximate controllabilitymodels are
some examples.

Regarding the stabilization of the unstable solutions of the
Ginzburg–Landau equation, using an internal feedback has been
a common technique. From this point of view, both global (space
independent) and local (space dependent) controls were used. At
the beginning, time-delay local feedback controlmechanismswere
used (see [3–6]). Then, a linear combination of spatially translated
and time-delay local feedback control terms were introduced. For
example [7] and [8] used this technique to stabilize the one and two
dimensional Ginzburg–Landau equations with cubic nonlinearity,
respectively. There are also some works which combine both local
and global type feedback controls where a local control is by
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itself not sufficient to control the turbulence (see, for example [9]
and [10]). However, in some studies (e.g., [11,12]), only global
feedback controls were shown to be effective, too.

Contrary to the internal feedback control mechanisms men-
tioned above, boundary controls which are obtained by using
the so called ‘‘back-stepping’’ methodology were also used to
stabilize the solutions of Ginzburg–Landau evolutions, see for
instance [13] and [14] for stabilization of the linearized one-
dimensional Ginzburg–Landau equation from the boundary.

Using non-feedback type controls (i.e., open loop control sys-
tems) is another method to steer solutions of a system to a desired
state preferably in small time. One such choice for the desired
state is the zero state in which case one talks about the null-
controllability. For example, [15] proved the null-controllability
of the solutions of the Ginzburg–Landau equation both from the
interior and the boundary via a non-feedback type control.

It is well-known that the Ginzburg–Landau equation has a finite
dimensional asymptotic in-time behavior [16]. In other words,
there is a finite number of degrees of freedom for the Ginzburg–
Landaumodel. There has been some recent work utilizing this type
of finite dimensionality for other dissipative systems to construct
feedback controls that only use finitely many volume elements,
finitely many Fourier modes, or finitely many nodal observables.
For example, [17] studied the one dimensional cubic reaction–
diffusion equation, also known as the Chafee–Infante equation. The
authors presented a unified approach that can be applied to a large
class of nonlinear partial differential equations including the CGLE
that we study here. The study carried out in [17] was important
since it pointed out to the fact that the finite-dimensional asymp-
totic behavior is sufficient for constructing feedback controls for
most dissipative dynamical systems. See also [18] for a similar dis-
cussion of the nonlinear wave equation. Motivated by these recent
works, we study the complex Ginzburg–Landau equation subject
to a feedback control which uses only finitely many determining
systems of the parameters mentioned above.

More precisely, we study the following feedback control prob-
lems in this work:

(1) L2-stabilization of the one dimensional CGLE model with
finitely many volume elements.

(2) Both L2 and H1-stabilization of the CGLE model with finitely
many Fourier modes.

(3) Steering solutions of the CGLE model: (i) to any solution (ii)
to exponentially decaying solutions.

(4) L2-stabilization of the one dimensional CGLE model with
finitely many nodal observables.

Remark 1.1 (A Few Words on the Global Well-Posedness). Our
proofs are based on the multiplier technique and intrinsic prop-
erties of the feedback control. The multiplier method in our proofs
can be easily justified by classical methods where one works on
approximate solutions first and then passes to the limit in the
energy estimates. The approximate solutions as well as the global
solvability of the original models we study here can be obtained
by using different techniques. One method is to use the maximal
monotone operator theory where various terms in the equation
are first replaced by their Yosida approximations; see [19] and
the references therein. Another approach is of course using the
Galerkin procedure where the infinite dimensional model is pro-
jected on a finite dimensional subspace. Most recently, some Lp −

Lq estimates have been proved on the corresponding evolution
operator of the Ginzburg–Landau equation [20], from which one
can also obtain the solvability of solutions.Wewill omit the details
of these procedures in this paper, since the additional feedback
control terms that we use here do not add any extra difficulties
to the well-posedness problem. Hence, in all of our results we
will simply assume the existence of a sufficiently nice solution (in
time and space). Depending on the model posed, solutions will be
assumed to be at L2, H1, or H2 levels in space.

2. L2-stabilization with finite volume elements

In this section,we consider the Ginzburg–Landau equationwith
finite volume elements feedback control on a bounded interval
(0, L) with homogeneous Neumann boundary conditions at both
ends of the domain:

ut − (λ + iα)uxx + (κ + iβ)|u|pu − γ u

= −µ

N∑
k=1

ukχJk (x), x ∈ (0, L), t > 0, (2.1)

ux(0, t) = ux(L, t) = 0, t > 0, (2.2)

u(x, 0) = u0(x), x ∈ (0, l), (2.3)

where λ, κ, γ > 0, α, β ∈ R, Jk ≡
[ (k−1)L

N , kL
N

)
, uk ≡

1
|Jk|

∫
Jk
udx,

and χJk is the characteristic function on Jk for k = 1, 2, . . . ,N . The
right-hand side,which involves the local averages (observables) uk,
is regarded as a feedback controller.

In what follows, we will use the following equivalent definition
of H1(0, L)-norm for convenience.

∥u∥2
H1(0,L) ≡

1
L2

∥u∥2
L2(0,L) + ∥ux∥

2
L2(0,L).

Theorem 2.1. Let u be a sufficiently smooth solution of (2.1)–(2.3)
with
1
N2 < min

{
1 −

4γ
µ

,
4λ
µL2

}
. (2.4)

Then

∥u(t)∥2
L2(0,L) ≤ e−µ

(
1
2 −

2γ
µ −

1
2N2

)
t
∥u0∥

2
L2(0,L)

for t ≥ 0.

Proof. Taking the L2-inner product of (2.1) with uwe get∫ L

0
ut ūdx + (λ + iα)

∫ L

0
|ux|

2dx + (κ + iβ)
∫ L

0
|u|p+2dx

− γ

∫ L

0
|u|2dx = −µ

∫ L

0
Ih(u)ūdx, (2.5)

where Ih(u) ≡
∑N

k=1ukχJk (x). The feedback operator Ih is indeed
an interpolant operator approximating the inclusion H1(0, T ) ↪→
L2(0, L). More precisely, the following Bramble–Hilbert type in-
equality (see [17, Proposition 2.1]) holds true.

∥u − Ih(u)∥L2(0,L) ≤ h∥u∥H1(0,L) (2.6)

where h =
L
N is the step size. Writing

Ih(u)u = (Ih(u) − u)ū + |u|2,

taking two times the real part of (2.5), and using the Cauchy–
Schwartz inequality, we obtain

d
dt

∫ L

0
|u|2dx + 2λ

∫ L

0
|ux|

2dx + 2κ
∫ L

0
|u|p+2dx − 2γ

∫ L

0
|u|2dx

≤ −µ

∫ L

0
|u|2dx + µ

(∫ L

0
|u|2dx

) 1
2
(∫ L

0
|u − Ih(u)|2dx

) 1
2

. (2.7)

Applying Young’s inequality,

d
dt

∫ L

0
|u|2dx + 2λ

∫ L

0
|ux|

2dx + 2κ
∫ L

0
|u|p+2dx − 2γ

∫ L

0
|u|2dx

≤ −µ

∫ L

0
|u|2dx +

µ

2

∫ L

0
|u|2dx +

µ

2
∥u − Ih(u)∥2

L2(0,L). (2.8)
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