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a b s t r a c t

We study the convergence rate of the moment-sum-of-squares hierarchy of semidefinite programs for
optimal control problems with polynomial data. It is known that this hierarchy generates polynomial
under-approximations to the value function of the optimal control problem and that these under-
approximations converge in the L1 norm to the value function as their degree d tends to infinity. We
show that the rate of this convergence is O(1/log log d). We treat in detail the continuous-time infinite-
horizon discounted problem and describe in brief how the same rate can be obtained for the finite-horizon
continuous-time problem and for the discrete-time counterparts of both problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The moment-sum-of-squares hierarchy (also known as the
Lasserre hierarchy) of semidefinite programs was originally intro-
duced in [1] in the context of polynomial optimization. It allows
one to solve globally non-convex optimization problems at the
price of solving a sequence, or hierarchy, of convex semidefinite
programming problems, with convergence guarantees; see e.g. [2]
for an introductory survey, [3] for a comprehensive overview
and [4] for control applications.

This hierarchy was extended in [5] to polynomial optimal con-
trol, and later on in [6] to global approximations of semi-algebraic
sets, originally motivated by volume and integral estimation prob-
lems. The approximation hierarchy for semi-algebraic sets derived
in [6] was then transposed and adapted to an approximation hi-
erarchy for transcendental sets relevant for systems control [7],
such as regions of attraction [8] and maximal invariant sets for
controlled polynomial differential and difference equations [9],
still with rigorous analytic convergence guarantees.

Central to the moment-sum-of-squares hierarchies of [5,8,9]
are polynomial subsolutions of the Hamilton–Jacobi–Bellman
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equation, providing certified lower bounds, or under-approxi-
mations, of the value function of the optimal control problem. It
was first shown in [5] that the hierarchy of polynomial subsolu-
tions of increasing degree converges locally (i.e. pointwise) to the
value function on its domain. Later on, as an outcome of the results
of [8], global convergence (i.e. in L1 norm on compact domains, or
equivalently, almost uniformly) was established in [10].

The current paper is motivated by the analysis of the rate of
convergence of the moment-sum-of-squares hierarchy for static
polynomial optimization achieved in [11]; see also [12] and ref-
erences therein for latest developments. We show that a similar
analysis can be carried out in the dynamic case, i.e. for assessing
the rate of convergence of the moment-sum-of-squares hierarchy
for polynomial optimal control. For ease of exposition, we focus on
the discounted infinite-horizon continuous-time optimal control
problem and briefly describe (in Section 5) how the same conver-
gence rate can be obtained for the finite-time continuous version
of the problem and for the discrete counterparts of both problems.

Ourmain Theorem 4 gives estimates on the rate of convergence
of the polynomial under-approximations to the value function
in the L1 norm. As a direct outcome of this result, we derive in
Corollary 2 that the rate of convergence is in O(1/log log d), where
d is the degree of the polynomial approximation. As far aswe know,
this is the first estimate of this kind in the context ofmoment-sum-
of-squares hierarchies for polynomial optimal control.
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1.1. Notation

The set of all continuous functions on a set X ⊂ Rn is denoted
by C(X); the set of all k-times continuously differentiable func-
tions is denoted by Ck(X). For h ∈ C(X), we denote ∥h∥C0(X) :=

maxx∈X |h(x)| and for h ∈ C1(X) we denote ∥h∥C1(X) := maxx∈X
|h(x)| + maxx∈X∥∇h(x)∥2 where ∇h is the gradient of h. The L1
norm with respect to a measure µ0 of a measurable function h :

Rn
→ R is denoted by ∥h∥L1(µ0) :=

∫
Rn h(x)µ0(dx). The set of all

multivariate polynomials in a variable x of total degree no more
than d is denoted by R[x]d. The symbol R[x]nd denotes the n-fold
cartesian product of this set, i.e., the set of all vectorswith n entries,
where each entry is a polynomial from R[x]d. The interior of a set
X ⊂ Rn is denoted by int X .

2. Problem setup

Consider the discounted infinite-horizon optimal control prob-
lem

V ⋆(x0) := inf
u(·), x(·)

∫
∞

0
e−βt l(x(t), u(t)) dt

s.t. x(t) = x0 +

∫ t

0
f (x(s), u(s)) ds

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0

(1)

where β > 0 is a given discount factor, f ∈ R[x, u]ndf and l ∈

R[x, u]dl are given multivariate polynomials and the state and
input constraint sets X and U are of the form

X = {x ∈ Rn
: gX

i (x) ≥ 0, i = 1, . . . , nX },

U = {u ∈ Rm
: gU

i (u) ≥ 0, i = 1, . . . , nU },

where gX
i ∈ R[x]dXi and gU

i ∈ R[u]dUi are multivariate polynomials.
The function V ∗ in (1) is called the value function of the optimal
control problem (1).

Let us recall the Hamilton–Jacobi–Bellman inequality

l(x, u) − βV (x, u) + ∇V (x, u) · f (x, u) ≥ 0 ∀ (x, u) ∈ X × U (2)

which plays a crucial role in the derivation of the convergence
rates. In particular, for any function V ∈ C1(X) that satisfies (2)
it holds

V (x) ≤ V ⋆(x) ∀ x ∈ X . (3)

The following polynomial sum-of-squares optimization problem
provides a sequence of lower bounds to the value function indexed
by the degree d:

max
V∈R[x]d

∫
X
V (x) dµ0(x)

s.t. l − βV + ∇V · f ∈ Qd+df (X × U),
(4)

where µ0 is a given probability measure supported on X (e.g., the
uniform distribution), and

Qd+df (X × U) :=

{
s0 +

nX∑
i=1

gX
i s

i
X +

nU∑
i=1

gU
i s

i
U :

s0 ∈ Σ⌊(d+df )/2⌋, s
i
X ∈ Σ

⌊(d+df −diX )/2⌋
, siU ∈ Σ

⌊(d+df −diU )/2⌋

}
,

is the truncated quadratic module associated with the sets X and
U (see [2] or [3]), where Σd is the cone of sums of squares of
polynomials of degree up to d. Note that whenever V is feasible in
(4), then V satisfies Bellman’s inequality (2), because polynomials
in Qd+df (X × U) are non-negative on X × U by construction.
Therefore any polynomial V feasible in (4) satisfies also (3) and
hence is an under-approximation of V ⋆ on X .

The truncated quadratic module is essential to the proof of
convergence of themoment-sum-of-squares hierarchy in the static
polynomial optimization case [1] which is based on Putinar’s Pos-
itivstellensatz [13]. We recall that some polynomials of degree
d + df non-negative on X × U may not belong to Qd+df (X × U)
[3]. On the other hand, optimizing over the polynomials belonging
to Qd+df (X × U) is ‘‘simple’’ (it translates to semidefinite program-
ming)while optimizing over the cone of non-negative polynomials
is very difficult in general. In particular, the optimization problem
(4) translates to a finite-dimensional semidefinite programming
problem (SDP). The fact that the truncated quadraticmodule has an
explicit SDP representation and hence can be tractably optimized
over is one of the main reasons for the popularity of the moment-
sum-of-squares hierarchies across many fields of science.

Throughout the paper we impose the following standing as-
sumptions.

Assumption 1. The following conditions hold:

(a) X ⊂ [−1, 1]n and U ⊂ [−1, 1]m.
(b) The sets of polynomials (gX

i )
nX
i=1 and (gU

i )
nU
i=1 both satisfy the

Archimedian condition.1
(c) 0 ∈ int X and 0 ∈ int U .
(d) The function ∇V ⋆ is Lipschitz continuous on X .
(e) The set f (x,U) is convex for all x ∈ X and the function

v ↦→ infu∈U {l(x, u) : v = f (x, u)} is convex for all x ∈ X .

The Assumption (a) and (b) are made without loss of generality
since the sets X and U are assumed to be compact and hence they
can be scaled such that they are included in the unit ball; adding
redundant ball constraints 1−∥x∥2 and 1−∥u∥2 in the description
of X and U then implies the Archimedian condition. Assumption
(c) essentially requires that the sets X and U have nonempty
interiors (a mild assumption) since then a change of coordinates
can always be carried out such that the origin is in the interior of
these sets. Assumption (d) is an important regularity assumption
necessary for the subsequent developments. Assumption (e) is a
standard assumption ensuring that the value function of the so-
called relaxed formulation of the problem (4) coincides with V ⋆

(see, e.g., [14]) and is satisfied, e.g., for input-affine2 systems with
input-affine cost function provided that U is convex. This class of
problems is by far the largest and practically most relevant for
which this assumption holds although other problems exist that
satisfy this assumption as well.3

Under Assumption 1, the hierarchy of lower bounds generated
by problem (4) converges from below in the L1 norm to the value
function V ⋆; see e.g. [10]:

Theorem 1. There exists d0 ≥ 0 such that the problem (4) is feasible
for all d ≥ d0. In addition V ≤ V ⋆ for any V feasible in (4) and
limd→∞∥V ⋆

− V ⋆
d ∥L1(µ0) = 0, where V ⋆

d is an optimal solution to (4).

The goal of this paper is to derive bounds on the convergence
rate of V ⋆

d to V ⋆.

3. Convergence rate

The convergence rate is a consequence of the following funda-
mental results from approximation theory and polynomial opti-
mization.

1 A sufficient condition for a set of polynomials (gi)ni=1 to satisfy the Archimedian
condition is gi = N − ∥x∥2

2 for some i and some N ≥ 0, which is a non-restrictive
condition provided that the set defined by the gi is compact and an estimate of its
diameter is known. For a precise definition of this condition see Section 3.6.2 of [2].
2 A system is input-affine if f (x, u) = fx(x) + fu(x)u for some functions fx and fu .
3 For example, consider l(x, u) = x2 , f (x, u) = x + u2 , U = [−1, 1].
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