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a b s t r a c t

We consider the problem of finding an energy-based formulation of the Navier–Stokes equations for
reactive flows. These equations occur in various applications, e. g., in combustion engines or chemical
reactors. After modeling, discretization, and model reduction, important system properties as the energy
conservation are usually lost whichmay lead to unphysical simulation results. In this paper, we introduce
a port-Hamiltonian formulation of the one-dimensional Navier–Stokes equations for reactive flows. The
port-Hamiltonian structure is directly associated with an energy balance, which ensures that a temporal
change of the total energy is only due to energy flows through the boundary. Furthermore, the boundary
ports may be used for control purposes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Model-based optimization and control methods are important
tools in many application areas. These come with a common need
for models which can be evaluated in a short time, but still capture
the main features of the considered system. In this context, model
reduction techniques have become very popular and have been
applied to various fields of application including flow control and
robotics, see e. g. [1,2]. All these applications have in common that
they are usually modeled based on physical laws, as for instance
conservation of energy. Oneway of preserving energy conservation
in all stages from the partial differential equations (PDEs) to the
reduced model is a port-Hamiltonian formulation of the system
equations.

Port-Hamiltonian systems provide an extension of classical
Hamiltonian systems by introducing ports which account for en-
ergy exchange with the environment and for energy loss due to
dissipation. Their structure implies directly passivity and, un-
der certain conditions for the Hamiltonian, also stability. More-
over, they are invariant under power-preserving interconnection.
Therefore, from the control perspective, a port-Hamiltonian for-
mulation is especially helpful, since it allows to apply passivity
based control techniques. An introduction to port-Hamiltonian
systems theory can be found in [3].

In the case of PDEs, i. e., in the infinite-dimensional setting,
there is no general canonical description of port-Hamiltonian
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systems. Instead, there are various different representations. The
most common approaches are the classical evolutionary one, see
e.g. [4–7] and the representation by a Stokes–Dirac structure [8,9].
Further concepts from mathematical physicals include polysym-
plectic [10,11] and multisymplectic [12,13] Hamiltonian systems.
The formulation derived in this paper belongs to the classical
evolutionary approach.

The general port Hamiltonian setting allows to describe sys-
tems from various areas of physics [3]. Here we mainly focus on
the applications to fluid dynamics and thermodynamics. For the
latter one, a quasi port-Hamiltonian structure has been introduced
in [14] to describe irreversible thermodynamics. The introduced
structure guarantees conservation of energy as well as a non-
decreasing entropy. One of the considered examples was a con-
tinuously stirred chemical reactor. However, this approach has not
yet been extended to systems with convective flows.

AHamiltonian formulation for an ideal fluid has been presented
in [15]. This has been extended to viscous flows in [16] by using the
notion of a metriplectic structure. However, neither the Hamilto-
nian nor the metriplectic structure accounts for a non-zero energy
flow through the boundary. For an ideal fluid, boundary flows
have been integrated in [8] leading to an implicit port-Hamiltonian
representation by means of a Stokes-Dirac structure. In [17] the
dynamics of viscous, isentropic flows with magnetohydrodynamic
coupling has been formulated as a port-Hamiltonian system with
boundary control. Recently, a Hamiltonian formulation of the full
Navier–Stokes equations has been presented in [18].

In this paper, we present a port-Hamiltonian formulation of
the full Navier–Stokes equations for reactive flows in a one-
dimensional spatial domain accounting for non-zero boundary
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energy flows. The infinite-dimensional formulation is based on the
Cartesian coordinate system and on a variational formulation of
the governing equations. This appears to be a convenient form for
future work about structure-preserving discretizations based on
Petrov Galerkin projections to obtain a finite-dimensional port-
Hamiltonian system. This will be addressed in another paper. Pre-
ceding efforts in the field of structure-preserving discretization
methods for port-Hamiltonian systemsmay be found, for instance,
in [19,20], whereas structure-preserving model reduction tech-
niques are discussed, e. g., in [21,22].

This paper is structured as follows. After the derivation of the
mathematical model, we present a Hamiltonian formulation of
the reactive Navier–Stokes equations with vanishing boundary
energy flows. Subsequently, this formulation is extended to a port-
Hamiltonian formulation with boundary ports accounting for non-
zero boundary energy flows.

2. Mathematical model

We consider the compressible Navier–Stokes equations for re-
active flows in a one-dimensional spatial domain Ω = (a, b) and
time domain [0, tend) with a, b, tend ∈ R, b > a, and tend > 0. These
may be derived from a generic conservation law, cf. [23], which is
reflected by the PDE

∂t f (x, t) + ∂xΦf (x, t) = qf (x, t) + rf (x, t) . (1)

This equation describes the change of the conserved generic quan-
tity

F (t) =

∫ b

a
f (x, t) dx

by generic fluxes Φf , production qf , and long-range processes rf .
In the following, we neglect the influence of the long-range pro-
cesses, since their effect ismarginal inmany applications. From the
generic equation (1), one can derive governing equations for the
conservation ofmass,momentum, energy, and species by replacing
the generic quantities by the specific ones stated in Table 1. The
resulting governing equations are summarized as

∂tρ + ∂x (ρv) = 0, (2a)

∂t (ρv) + ∂x
(
ρv2

+ p + τ
)

= 0, (2b)
∂t (ρe) + ∂x (ρev + (p + τ) v + φ) = 0, (2c)

∂t (ρyi) + ∂x (ρyiv + ji) = M̃iωi (2d)

with density ρ, velocity v, pressure p, shear stress τ , specific total
energy e, heat flux density φ, mass fraction yi of the ith species,
diffusion flux densities ji, molar masses M̃i, and molar rates of
formation ωi. Here, we consider N ∈ N different species and, thus,
(2d) with i = 1, . . . ,N represents N equations.

Since we neglect the influence of long-range processes, we also
assume the change of potential energy to be zero. Thus, we may
express the total energy ρe as the sum of internal energy ρu and
kinetic energyρv2/2.Using this relation andEq. (2b),we canderive
the conservation law for the internal energy from the conservation
law of the total energy (2c) as

∂t (ρu) + ∂x (ρuv + φ) + (p + τ) ∂xv = 0

with specific internal energy u, cf. [23]. By applying the product
rule, we may write the governing equations as

∂tρ + ∂x (ρv) = 0, (3a)

∂tv + v∂xv +
1
ρ

∂x (p + τ) = 0, (3b)

∂tu + v∂xu +
1
ρ

(p + τ) ∂xv +
1
ρ

∂xφ = 0, (3c)

Table 1
Special quantities for conservation of mass, momentum, energy, and species [23].

F f Φf qf
Mass m ρ ρv 0
Momentum mv ρv ρv2

+ p + τ 0
Energy me ρe ρev + (p + τ) v + φ 0
Species myi ρyi ρyiv + ji M̃iωi

∂tyi + v∂xyi +
1
ρ

∂xji =
1
ρ
M̃iωi. (3d)

Further, umay be expressed as a function of ρ, the specific entropy
s, and y1, . . . , yN . The Gibbs equation

du = Tds − pd
(
1
ρ

)
+

N∑
i=1

µidyi (4)

describes the change of u with respect to changes of ρ, s, and
y1, . . . , yN . Here, T denotes the temperature and µi the chemical
potential of the ith species [24]. With (4) we can express Eq. (3c) in
terms of the entropy, namely

∂ts + v∂xs +
τ

ρT
∂xv +

1
ρT

∂xφ +

N∑
i=1

µi

ρT
(M̃iωi − ∂xji) = 0,

where we already have used the relations

T = ∂su, p = ρ2∂ρu, and µi = ∂yiu. (5)

Finally, the governing equations are closed, based on the closure
equations of

Fourier’s law: φ = −κ∂xT , (6)
Newtonian fluid: τ = −µ̂∂xv, (7)
Fick’s law: ji = −ρDi∂xyi, (8)

where κ denotes the thermal conductivity, µ̂ the dynamic viscosity
(scaled by the factor 4/3 to account for compressible flow, cf. [23]),
andDi themass diffusivity of the ith species. Fourier’s law as stated
in (6) is based on the assumptions of a vanishing Dufour effect and
negligible heat flux due to diffusion, cf. [23,24]. Furthermore, we
assume that the effects of thermal diffusion and pressure diffusion
may be neglected which leads to Fick’s law as in (8), cf. [23].

Using (5), we can summarize the governing equations as

∂tρ + ∂x (ρv) = 0, (9a)

∂tv + ∂x

(
1
2
v2

+ u + ρ∂ρu
)

+
1
ρ

∂xτ − T∂xs −

N∑
i=1

µi∂xyi = 0, (9b)

∂ts + v∂xs +
τ

ρT
∂xv −

1
ρT

∂x (κ∂xT )

+

N∑
i=1

µi

ρT

(
M̃iωi + ∂x (ρDi∂xyi)

)
= 0, (9c)

∂tyi + v∂xyi −
1
ρ

∂x (ρDi∂xyi) =
1
ρ
M̃iωi (9d)

with known constants M̃i and known functions Di, ωi, u, µ̂, T , κ , µi
which depend on ρ, s, and y1, . . . , yN .

For the formulation of the governing equations as Hamiltonian
or rather port-Hamiltonian system, we consider the variational
formulation (in terms of the space derivatives). For this, we apply a
sufficiently smooth test function ϕ to the equations in (9). Further-
more, we use the integration by parts formula which introduces
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