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a b s t r a c t

A new framework is given for coordination of multi-agent systems that are interconnected by a physical
coupling digraph. The edges of this graph represent physical couplings between agents that are fixed
due to dynamical interactions. On top of the physical graph, distributed control protocols are designed
where the allowed communications between agents for control purposes are prescribed by a second
fixed communication digraph. The physical and communication digraphs are generally different and the
combination of these two graphs forms a cyber-physical system. The interactions between physical and
communication graphs are the focus of this paper.We consider different interactions between two graphs,
including the case when their pinned Laplacian commutes, the case of the communication graph with
diagonalizable pinned Laplacian, and the case of two general graphs. Moreover, within each graph, the
relations between the agents can be either collaborative or antagonistic. To capture this, the theory of
bipartite consensus is used. Coordination protocols for different cases are designed that are distributed
with respect to the communication graph, and overcome the detrimental effects of the signed physical
graph. The proposed control methods are illustrated by simulation examples.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The topic of consensus of multi-agent systems has received
significant attentions due to its broad applications [1–4]. These
works have concentrated on either the consensus regulation prob-
lem (leaderless consensus problem) [5–13] or the consensus track-
ing problem (leader-following consensus problem) [14–18]. The
vast majority of the current research on consensus has focused
on multi-agent systems with a single interaction graph. However,
as the research has turned toward cyber-physical systems with
more complex interaction channels, it has become interesting to
consider multi-agent systems whose dynamics are interconnected
by a physical coupling graph and whose control protocols are
computed using the information flow prescribed in a second com-
munication graph [19–21]. For example, in a teamofmobile robots,
deployment of the team for a search and rescue mission in a
hazardous environment requires integration of a cyber wireless
communication graphwith a physicalmobility graph [22]. Also the
microgrid (a building block of the smart grid) is a physical electric
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power network joining distributed generators. The secondary level
control of the microgrid is accomplished through a second com-
munication graph [23–27], which should be designed separately
from the physical electric power network. This combination of
two graphs constitutes a cyber-physical system. To compute the
distributed control protocols for such dynamically interconnected
multi-agent systems, the interactions between the physical cou-
pling graph and the communication graph should be taken into
account.

Another common trait of most current formulations of the
consensus problem is that the edge weights of the communica-
tion graphs between agents are assumed to be nonnegative. That
is, most available consensus strategies only apply to multi-agent
systems with collaborative interactions. However, in real appli-
cations, there may exist some antagonistic interactions between
neighboring agents, which can be characterized by negative graph
weights [28,29]. In different contexts such as social networks and
biological systems, the meanings of positive and negative links
may be different. For instance, in social networks, a positive (resp.
negative) link can be associated to a friendly (resp. hostile) mutual
relationship between pairs of individuals, parties and sport teams.
In gene or protein regulatory networks, a positive/negative link
corresponds to activation/inhibition interaction between genes or
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proteins. Efforts to understand the properties of non-collaborative
or antagonistic interactions have led to development of the signed
graph theory and the related structural balance theory [30,31],
where each link is associated with a sign (positive or negative)
indicating whether the interaction between agents is collaborative
or antagonistic.

In contrast to the bulk of research on distributed control of net-
works on nonnegative graphs, only a handful of results are avail-
able for networks on signed graphs, see for example [32–35]. The
reference [32] is the firstwork that extends the notion of consensus
and its distributed protocol designs to single-integrator multi-
agent systems with antagonistic interactions. Based on properties
of signed graphs, Altafini showed that all agents on signed net-
works can converge to a common value which is the same for all
agents in modulus but not in sign, which was termed as bipartite
consensus. Following this line, the bipartite consensus problem
under a weak connectivity assumption was investigated for a
network of agents modeled as simple scalar integrators [33,34].
Afterwards, Valcher and Misra [35] addressed bipartite consensus
for a group of single-input linear time-invariant (LTI) agents on
undirected communication graphs, wherein it was proved that
bipartite consensus can be achieved if and only if the state space
model describing each agent is stabilizable. More recently, the
work of [35] was extended to the general linear multi-agent sys-
tems [36,37] over directed signed graphs. However, we note that
the bipartite consensus behavior in these existing studies occurs
only in multi-agent systems with a single interaction graph.

In this paper, we investigate the coordination problem (in-
cluding consensus and bipartite consensus) of linear multi-agent
systems coupled by a physical interaction digraph Gp that is fixed
a priori. The allowed information flow for the distributed control
protocols is prescribed by a separate second communication di-
graph Gc which is also fixed. Therefore, in terms of recently de-
velopedmultilayer networker theory [38,39], the closed-loop form
of our model is well embedded into the framework of multiplex
networks of two layers, one for the physical layer Gp and the other
for the communication layer Gc . Recently, the ideal of multiplex
control strategy has been proposed to solve the consensus regula-
tion problem [40–43]. Typical assumptions in [40–42] are that the
agent is described by the first-integrator or double-integrator dy-
namics, or that the topology structure of multiplex control actions
(e.g., the proportional action, the integral action and the deriva-
tive action) is assumed to be the same. These assumptions seem
inconsistentwith thewell-recognized fact that the agent dynamics
may be complex and different control layers have different intra-
layer interconnection structure. In [43], Burbano and Bernardo
explored the consensus problem in networks of generic linear
systems by proposing a multiplex proportional-integral control
strategy. However, the linear agent dynamics is constrained to a
special LTI case with B = I and the graphs of two different control
layers are assumed to be nonnegative and undirected. Therefore,
the existing results are not applicable to solve the coordination
problem of multi-agent systems with directed and antagonistic
interactions.

The objective of this paper is to address the following issues for
LTI multi-agent systems with two directed interaction graphs and
antagonistic interactions: (1) Under what conditions, a distributed
control algorithm can be developed to guarantee the multi-agent
system to reach consensus tracking or bipartite consensus tracking
to the leader. (2) How to design this distributed control algorithm
systematically. Aiming to answer this issue, the interactions of
two graphs Gp and Gc form the focus of this paper. It is assumed
throughout that Gp mayhave positive or negativeweights. Part one
(Section 3) of the paper considers the standard consensus setting
where the communication graph Gc has nonnegative weights. Part
two (Section 4) considers the bipartite consensus setting where

Gc may have positive or negative weights. For each setting, three
different cases of the interactions between Gp and Gc will be con-
sidered: (1) The two graphs have pinned Laplacian that commutes,
(2) The communication graph has a simple pinned Laplacian, that
is, the pinned Laplacian is diagonalizable, and (3) The case where
Gp and Gc are both general digraphs. When compared to existing
studies, our contributions can be summarized as follows.

(i) The coordination problem is solved for multi-agent systems
that have multiplex structure of two layers (i.e., the physical
layer Gp and communication layer Gc). The interactions be-
tween Gp and Gc are studied and shown to influence the design
of coupling gains required to achieve coordination.

(ii) A unified approach to the analysis of coordination for phys-
ically coupled systems is provided for the design of com-
munication protocols on both nonnegative communication
networks (using standard consensus) and signed communica-
tion networks (using bipartite consensus).

(iii) We show that nonnegative physical networks can help the
system achieve coordination, while the detrimental effects of
signed physical networks on coordination process can be over-
come by designing appropriate coupling gains.

The rest of this paper is organized as follows. Section 2 presents
some preliminaries and the model for coordination issues with
both physical and communication networks. Sections 3 and 4
provide the main results for consensus and bipartite consensus,
respectively. Section 5 is devoted to two illustrative examples.
Finally, conclusions are summarized in Section 6.

2. Preliminaries and network model

2.1. Preliminaries

In this subsection, we introduce some notations and terminolo-
gies in graph theory that will be used in the following.

In (or On) denotes the n × n identity matrix (or zero matrix)
(when clear from the context, we might drop the dimension sub-
scripts); 1n (or 0n) denotes a vector in Rn with elements being
all ones (or all zeros). Transpose of real matrices and conjugate
transpose of complexmatrices are denoted by the superscripts ‘‘T ’’
and ‘‘H ’’, respectively. ∥ · ∥ denotes the Euclidean norm or the cor-
responding induced matrix 2-norm. ⊗ represents the Kronecker
product. diag{A1, . . . , AN} defines a block-diagonal matrix whose
diagonal entries are A1, . . . , AN . For a real symmetric matrix W ,
denote by λmax(W ) its largest eigenvalue and λmin(W ) its smallest
eigenvalue. We say W > 0 (or W < 0) if the symmetric matrix W
is positive (or negative) definite. For ξ ∈ C, Re(ξ ) means the real
part of ξ .

Let G = (V, E) be a weighted digraph (directed graph), where
V = {1, . . . ,N} is the node set and E ⊆ V × V is the edge set. A
directed edge eij in E is denoted by the ordered pair of nodes (j, i),
meaning that node i can receive information fromnode j and node j
is called a neighbor of node i. Its adjacencymatrixG = [gij] ∈ RN×N

is defined as: gij ̸= 0 if (j, i) ∈ E and gij = 0 otherwise. The set of
neighbors of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E}. No self-
loop is allowed, hence aii = 0, ∀ i ∈ V . A graph G with all gij ≥ 0
is called a nonnegative graph, otherwise called a signed graph. A
sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik) is called a directed
path from node i1 to node ik. A (nonnegative or signed) digraph is
said to have a spanning tree if there exists a node, called the root,
which has a directed path to every other node in the graph.

2.2. Network model

We consider a multi-agent system consisting of a leader and
N followers, where the leader is labeled as agent 0 and the
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