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a b s t r a c t

In this work, we study finite-horizon multiple-sensor scheduling for general scalar Gauss–Markov sys-
tems, extending previous results where only a class of systems are considered. The scheduling objective
is tominimize the terminal estimation error covariance. At each time instant, only one sensor can transmit
itsmeasurement and each sensor has limited energy. Through building a comparison function and solving
its monotone intervals, an efficient algorithm is designed to construct the optimal schedule. In addition,
we also provide the result for selecting multiple sensors per time instant under an assumption. Examples
are provided to illustrate the proposed results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

With the development of wireless communication technology,
wireless sensor networks (WSNs) have attracted a wide spectrum
of applications such as health care, environmentmonitoring, smart
grid [1–4]. InWSNs, a large number of sensor nodes deployed in the
area of interest provide various information for observers. In many
of these applications, however, sensor nodes are usually battery-
powered and replacing old batteries generally is impossible [5],
and the amount of energy for communication with a remote pro-
cessing center is limited. In addition, the communication band-
widthmay be limited and shared bymultiple sensors. These factors
extremely restrict the system performance.

In this context, optimal sensor scheduling problems for remote
state estimation have received considerable attention in recent
years. The main objective is to minimize cost functions related to
the state estimation error. Considering that only one sensor out of
a set of sensors can perform a measurement, Huber [6] proposed a
information-based pruning algorithm to minimize the estimation
error over multiple time steps. Vitus et al. [7] considered a similar
problem, and provided an optimal and a suboptimal algorithm to
prune the search tree of all possible sensor schedules. Joshi and
Boyd [8] approximately solved one step sensor scheduling prob-
lem based on convex optimization theory. Further, Mo et al. [9]
developed a multi-step sensor selection strategy to minimize an
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objective function related to the estimation error covariance ma-
trix using a relaxed convex form. Gupta et al. [10] proposed a
stochastic sensor selected strategy according to a probability dis-
tribution to minimize an upper bound on the expected steady-
state performance. Shi and Chen [11] developed a branch and
bound approach to address the optimal periodic multiple-sensor
scheduling problem. In addition, aiming to the case of constrained
sensors, the same authors proposed an approximation framework
to solve the periodic scheduling problem and presented an upper
bound on the approximation error to valuate the performance of
the framework [12]. An optimal dynamic sensor energy schedule
was derived by Ren et al. [13] to minimize the average estimation
error covariance over a packet loss channel. To achieve the better
estimation quality, event-based sensor data scheduling algorithms
were proposed in [14–17].

These algorithms above mainly aim to minimize the average
estimation error. However, there exist the applications in which
we focus on the terminal estimation error covariance in practice.
Examples include interceptors, standardized tests and other dis-
crete events. Related studies on minimizing terminal estimation
error covariance have emerged in past few years. Savage and
La Scala [18] firstly presented a set of results in the context of
minimizing a terminal cost for a particular class of scalar sys-
tems. Further for more general scalar systems, the explicit optimal
scheduling policies with the terminal estimation error covariance
for single-sensor andmultiple-sensor cases respectively were pro-
vided in [19,20]. Shi et al. [21] constructed optimal power sched-
ules to minimize a cost function of a weighted terminal estimation
error and a weighted average estimation error over a packet-
delaying network. Shi and Xie [22] constructed an optimal sensor
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power schedule to minimize the expected terminal estimation
error covariance over a packet-dropping network.

In this paper, we consider finite-horizon multiple-sensor
scheduling for state estimation. The objective is to minimize the
terminal estimation error covariance for general scalar Gauss–
Markov systems subject to the sensor energy and communication
bandwidth constraints. This work presents two main contribu-
tions, extending the previous results by Jia et al. in [20], where the
authors showed that when only a subset of the sensors perform
the measurements per time instant, a good-sensor-late-broadcast
(GSLB) rule performs optimally for a class of scalar Gauss–Markov
systems.

(1) First, for the case of selecting one sensor, through building a
comparison function and solving itsmonotone intervals (see
Lemma 1), we design an efficient algorithm to construct the
optimal schedule for general scalar Gauss–Markov systems.

(2) Second, for the case of selecting multiple sensors, we prove
that the optimality of a GSLB rule presented by [20] also
holds for the other class of Gauss–Markov systems under an
additional assumption.

The rest of the paper is constructed as follows. In Section 2,
the sensor scheduling problem is mathematically formulated. The
optimal schedule is constructed then in Section 3. The extension to
selectingmultiple sensors per time instant is included in Section 4.
Simulation examples are provided in Section 5. Some concluding
remarks are given in the end.

Notations. The positive integer k is the time index. R+ is the
set of non-negative real numbers. For functions f , f1, f2 with the
appropriate domains, f1f2(z) := f1(f2(z)) and f t (z) := f (f t−1(z))
with f 0(z) := z.

2. Problem setup

Consider the following scalar Gauss–Markov system1 :

x (k + 1) = ax (k)+ w (k) , yi (k) = cix (k)+ vi (k) , (1)

where x(k) is the system state, yi(k) is the measurement taken by
sensor i for i ∈ {1, 2, . . . ,M},w(k) and vi(k) are mutually uncorre-
lated zero-mean white Gaussian random noises with covariances
q > 0 and ri > 0 respectively. The initial condition x(0) is zero-
mean Gaussian with covariance p0 > 0, and is uncorrelated with
w(k) and vi(k). In addition, vi(k) and vj(k) aremutually uncorrelated
if i ̸= j. Define bi := c2i /ri, thus bi is the sensor information value
and sensor i that has bigger bi generally embraces more accurate
measurement.Without loss of generality, assume b1 < b2 < · · · <
bM . Assume a, c ̸= 0.

Considering the communication bandwidth constraint, only
one sensor can access the communication channel to transmit its
measurement per time instant. The sensors are selected according
to a schedule swithin a time-horizon T denoted as

s := [s(1), s(2), . . . , s(T )] , (2)

where s(k) ∈ {1, . . . ,M}, indicating the sensor index of the kth
measurement scheduledwithin the time-horizon T . Let γi(k) be the
indicator function whose value (1 or 0) implies whether sensor i is
selected to use the communication channel at time k. Thuswe have
M∑
i=1

γi (k) = 1, k = 1, 2, . . . , T . (3)

1 Note that here {x(k)} is a Gauss–Markov process whereas {y(k)} is only a Gauss
process. Eq. (1) is also referred to as a Gauss–Markov system in [18,19,22].

Consider each sensor has limited energy and assume the energy
of all sensors only can send d of the measurements to the remote
estimator. Let Ji > 0 be the available transmission times of sensor
i, then

∑M
i=1Ji = d. For notational simplicity, we assume T = d, and

the cases T > d and T < d will be discussed later (see Remark 3).
For linear Gaussian systems, the Kalman filter is the best esti-

mator of x(k) in a minimum mean-square sense [23]. For a given
schedule s, the state estimation error covariance p(k) can be recur-
sively calculated partly in information form

ps(k + 1) =

[
1(

a2ps(k) + q
) + bs(k+1)

]−1

. (4)

Taking the limit as ri → ∞ for i ∈ {1, 2, . . . ,M}, which is
equivalent to the case in which no measurement is taken, the
update (4) can be rewritten as

p(k + 1) = a2p(k) + q. (5)

If |a| < 1, i.e., a is stable, p(k) in (5) converges to a steady-state
value p̄ as k → ∞ and satisfies

p̄ = a2p̄ + q. (6)

By (6), we have p̄ = q/1 − a2.
Denote S as the set of all possible schedules. In this paper, we

wish to find an optimal schedule s ∈ S to minimize the terminal
error covariance subject to the sensor energy and communication
bandwidth constraints, i.e.,

Problem 1.
min
s∈S

ps(T )

s.t.
M∑
i=1

γi (k) = 1, k = 1, 2, . . . , T

T∑
k=1

γi (k) = Ji, i = 1, 2, . . . ,M.

3. Optimal schedule

In [20], the authors showed that when |a| ≥ 1, the optimal
scheduling policy to Problem 1 is that good sensors should be
scheduled as late as possible. However, they did not present the
optimal schedule for the case |a| < 1. In this section, we will
construct the optimal schedule to Problem 1 for general scalar
Gauss–Markov systems.

First define functions h, gi, Fi,j : R+ → R+ as follows:

h(z) := a2z + q, (7)

gi(z) :=
(
h−1(z) + bi

)−1
, i = 1, 2, . . . ,M, (8)

Fi,j(z) := gigj(z) − gjgi(z), 1 ≤ i < j ≤ M. (9)

Thus h(z) and gi(z) equate to the time update and measurement
update for Kalman filter, respectively. Fi,j(z) can be regarded as a
comparison function where two different sensors are scheduled
with the reverse order in two adjacent time instants for scalar
Gauss–Markov systems. Next, we will give two lemmas, which are
essential to derive the optimal schedule.

Lemma 1. Fi,j(z) have the following three properties:

(1) Fi,j(0) > 0.
(2) |a| ≥ 1: Fi,j(z) strictly increases on z ∈ [0,∞).
(3) |a| < 1: Fi,j(z) is a piecewise monotone function that strictly

increases on z ∈ [0, p̄) and strictly decreases on z ∈ (p̄,∞).
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