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a b s t r a c t

Recent developments in the realm of state estimation of stochastic dynamic systems in the presence
of non-Gaussian noise have induced a new methodology called the maximum correntropy filtering.
The filters designed under the maximum correntropy criterion (MCC) utilize a similarity measure (or
correntropy) between two random variables as a cost function. They are shown to improve the estimators’
robustness against outliers or impulsive noises. In this paper we explore the numerical stability of linear
filtering technique proposed recently under the MCC approach. The resulted estimator is called the
maximum correntropy criterion Kalman filter (MCC-KF). The purpose of this study is two-fold. First,
the previously derived MCC-KF equations are revised and the related Kalman-like equality conditions
are proved. Based on this theoretical finding, we improve the MCC-KF technique in the sense that the
new method possesses a better estimation quality with the reduced computational cost compared with
the previously proposed MCC-KF variant. Second, we devise some square-root implementations for the
newly-designed improved estimator. The square-root algorithms are well known to be inherently more
stable than the conventional Kalman-like implementations, which process the full error covariancematrix
in each iteration step of the filter. Additionally, following the latest achievements in the KF community,
all square-root algorithms are formulated here in the so-called array form. It implies the use of orthogonal
transformations for recursive update of the required filtering quantities and, thereby, no loss of accuracy is
incurred. Apart from the numerical stability benefits, the array form also makes the modern Kalman-like
filters better suited to parallel implementation and to very large scale integration (VLSI) implementation.
All theMCC-KF variants developed in this paper are demonstrated to outperform the previously proposed
MCC-KF version in two numerical examples.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In the past few years, the study of filtering techniques under the
maximum correntropy criterion (MCC) has become an important
aspect of a hidden state estimation of stochastic dynamic systems
in the presence of non-Gaussian noise [1–4]. The MCC methodol-
ogy implies that a statistical metric of a similarity between two
random variables (or correntropy) is used as a cost function (or
performance index) for designing the corresponding estimation
method. The resulted MCC filters have become the methods of
choice in signal processing andmachine learning due to its robust-
ness against outliers or impulsive noises compared to the classical
Kalman filtering (KF); e.g., see the discussion in [5–9] and many
others.

Being a linear estimator, the KF is an attractive and simple tech-
nique that requires only the computation of mean and covariance
for constructing the optimal estimate of unknown dynamic state
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under the minimum mean square (MMS) criterion. For Gaussian
systems, this estimate is optimal, i.e. the KF reduces to an MMS
estimate rather than a linear MMS estimate. It is clear that in non-
Gaussian setting, the classical KF exhibits sub-optimal behavior
only. Due to this fact, there was a need for a new estimator
that improves the KF robustness against outliers or impulsive
noises.

For linear non-Gaussian state-space models, the robust max-
imum correntropy Kalman filter (MCKF) and the maximum cor-
rentropy criterion Kalman filter (MCC-KF) have been recently
developed in [10,11] and [12], respectively. As all Kalman-like
filtering algorithms, they compute the first two moments (i.e. the
mean and the covariance) for constructing the optimal estimate.
However, in contrast to the classical KF, these recent developments
utilize the robust MCC as the optimality criterion, instead of using
the MMS cost function. As a result, the new filters are shown
to outperform the classical KF and several nonlinear Kalman-
like filtering techniques in the presence of non-Gaussian uncer-
tainties in the state-space models. Nevertheless, little attention
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is paid to numerical stability of the Kalman-like filters devel-
oped under the MCC strategy, although the classical KF is widely
known to suffer from the influence of roundoff errors, severely;
see [13,14]. Our research has tended to focus on the MCC-KF
technique and the design of its numerically stable square-root
implementations.

The purpose of this paper is two-fold. First, we revise the
previously derived MCC-KF equations and prove the related
Kalman-like equality conditions. Based on this theoretical finding,
we improve the previously proposed MCC-KF algorithm in the
sense that the new filter (abbreviated as IMCC-KF) possesses a
better estimation quality with the reduced computational cost.
Second, we devise some square-root IMCC-KF implementations
grounded in numerically robust orthogonal transformations. The
square-root strategy is the most popular approach used for en-
hancing the filter numerical robustness; see [15–18] etc. It im-
plies the Cholesky decomposition of error covariance matrix and,
then, recursive re-calculation of its Cholesky factors instead of
using full matrix. Following the latest achievements in the KF
community, all square-root algorithms are formulated here in
the so-called array form. This means that numerically stable or-
thogonal transformations are used as far as possible for updating
the Cholesky factors in each iteration step. This provides a more
reliable estimation procedure as explained in [19, Chapter 12].
Apart from numerical advantages, array Kalman-like algorithms
are easier to implement than the explicit filter equations, because
all required quantities are simply read off from the corresponding
filter post-arrays. As mentioned in [18], this makes the modern
KF-like algorithms better suited to parallel implementation and
to very large scale integration (VLSI) implementation. Finally, all
algorithms developed in this paper are demonstrated to outper-
form the previously proposedMCC-KF technique in two numerical
examples.

2. Maximum correntropy criterion Kalman filter

Consider the state-space equations

xk = Fk−1xk−1 + Gk−1wk−1, k ≥ 1, (1)
zk = Hkxk + vk (2)

where xk ∈ Rn and zk ∈ Rm are the unknown dynamic state and
the observable measurement vector, respectively. The processes
{wk} and {vk} are zero-mean, white, uncorrelated, and have known
covariance matrices Qk and Rk, respectively. They are also uncor-
related with the initial state x0, which has the mean x̄0 and the
covariance matrixΠ0.

The KF associated with state-space model (1), (2) yields the
linear MMS estimate, x̂k|k, of the unknown dynamic state, given
the available measurements {z1, . . . , zk}. To improve the filter
estimation quality in the presence of non-Gaussian noise, the
MCC optimality criterion can be used instead of the MMS cost
function for deriving the corresponding filtering equations. The
performance index to be optimized under the MCC (with Gaussian
kernel) approach is given as follows [4,12]:

Jm(xk) = Gσ (∥zk − Hkxk∥)+ Gσ (∥xk − Fk−1xk−1∥)

where Gσ (∥xk − yk∥) = exp
{
−∥xk − yk∥2/(2σ 2)

}
, and σ > 0 is

the kernel size or bandwidth.
Minimization of the objective function Jm with respect to xk

implies ∂ Jm/∂xk = 0 and yields the equation [4]:

(xk − Fk−1xk−1) =
Gσ (∥zk − Hkxk∥)

Gσ (∥xk − Fk−1xk−1∥)
HT

k (zk − Hkxk). (3)

Wenote that the best estimate for state vector xk−1 at timepoint
k − 1 is a posteriori estimate x̂k−1|k−1. Hence, from (3) one obtains
the following nonlinear equation, which needs to be solved with
respect to xk:

xk = Fk−1x̂k−1|k−1 +
Gσ (∥zk − Hkxk∥)

Gσ
(
∥xk − Fk−1x̂k−1|k−1∥

)HT
k (zk − Hkxk). (4)

The fixed point correntropy filter developed in [4] and theMCC-
KF method proposed in [12] suggest to use a fixed point rule for
solving the mentioned nonlinear equation with initial approxi-
mation x(0)k = x̂k|k−1 at the right-hand side of (4). Besides, both
techniques imply only one iteration of the fixed point rule and,
hence, by substituting xk ≈ x̂k|k−1 into the right-hand side of
formula (4) we obtain the following recursion

x̂k|k = Fk−1x̂k−1|k−1 +
Gσ

(
∥zk − Hkx̂k|k−1∥

)
Gσ

(
∥x̂k|k−1 − Fk−1x̂k−1|k−1∥

)
×HT

k (zk − Hkx̂k|k−1).

Next, the MCC-KF method designed in [12] integrates the KF
minimum-variance estimation with the maximum correntropy
filtering. In particular, the cited paper utilizes the norm ∥ · ∥R−1

k
induced by the inverse measurement covariance matrix R−1

k in
the numerator and the norm ∥ · ∥P−1

k|k−1
induced by the inverse

predicted process covariance matrix P−1
k|k−1 in the denominator of

the recursion above. Thus, the MCC-KF is given as follows; see
Algorithm 2 in [12]:

Initialization:

x̂0|0 = E {x0} , P0|0 = E
{
(x0 − x̂0|0)(x0 − x̂0|0)T

}
. (5)

Prior estimation:

x̂k|k−1 = Fk−1x̂k−1|k−1, (6)

Pk|k−1 = Fk−1Pk−1|k−1F T
k−1 + Gk−1Qk−1GT

k−1. (7)

Posterior estimation:

Lk =

Gσ
(
∥zk − Hkx̂k|k−1∥R−1

k

)
Gσ

(
∥x̂k|k−1 − Fk−1x̂k−1|k−1∥P−1

k|k−1

) , (8)

K L
k = (P−1

k|k−1 + LkHT
k R

−1
k Hk)−1LkHT

k R
−1
k , (9)

x̂k|k = x̂k|k−1 + K L
k (zk − Hkx̂k|k−1), (10)

Pk|k = (I − K L
kHk)Pk|k−1(I − K L

kHk)T + K L
kRk(K L

k )
T . (11)

In the equations above, we use the new notation K L
k for the gain

matrix (P−1
k|k−1 + LkHT

k R
−1
k Hk)−1LkHT

k R
−1
k appeared in Algorithm 2

in [12], emphasizing the dependence of this quantity on the scalar
Lk. This also helps us to distinguish this matrix from the classical
KF feedback gain in the rest of our paper.

The readers are referred to [12] for a detailed derivation and
properties of the MCC-KF estimator under consideration. In the
cited paper, the MCC-KF is shown to outperform the classical KF,
the fixed point correntropy filter from [4] and several nonlinear
filtering techniques when the non-Gaussian uncertainties arise in
stochastic system (1), (2).

It is worth noting here that because of utilizing only one it-
eration of a fixed point rule for solving the underlying nonlinear
equation (4), we have Gσ

(
∥x̂k|k−1 − Fk−1x̂k−1|k−1∥

)
= Gσ (∥0∥) =

1 since x̂k|k−1 = Fk−1x̂k−1|k−1. Hence, both methods in [4,12]
can be simplified since the denominator in (8) is equal to 1. For
further iterates, this is not the case and the difference might be
considerable. For this reason, the general form of (8) is used in this
paper.
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