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a b s t r a c t

We study the safety verification problem for a class of distributed parameter systems described by partial
differential equations (PDEs), i.e., the problem of checking whether the solutions of the PDE satisfy a set
of constraints at a particular point in time. The proposed method is based on an extension of barrier
certificates to infinite-dimensional systems. In this respect, we introduce barrier functionals, which are
functionals of the dependent and independent variables. Given a set of initial conditions and an unsafe
set,we demonstrate that if such a functional exists satisfying two (integral) inequalities, then the solutions
of the system do not enter the unsafe set. Therefore, the proposed method does not require finite-
dimensional approximations of the distributed parameter system. Furthermore, for PDEswith polynomial
data, we solve the associated integral inequalities using semi-definite programming (SDP) based on a
method that relies on a quadratic representation of the integrands of integral inequalities. The proposed
method is illustrated through examples.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world engineering systems are described by partial
differential equation (PDE)models, which include derivatives with
respect to both space and time. For example, mechanics of fluid
flows [1], dynamics of spatially inhomogeneous robot swarms [2],
and the magnetic flux profile in a tokamak [3] are all described
by PDEs. However, compared to systems described by ordinary
differential equations (ODEs), the analysis of PDE systems is more
challenging. For instance, the solutions to PDEs belong to infinite
dimensional (function) spaces, where the norms are not equiva-
lent, as opposed to Euclidean spaces for ODEs. Hence, properties
such as stability [4] and input–output gains [5] may differ from
one norm to another.

One interesting and unresolved problem in the analysis of PDEs
is safety verification. That is, given the set of initial conditions,
check whether the solutions of the PDE satisfy a set of constraints,
or, in other words, whether they are safe with respect to an un-
safe set. Reliable safety verification methods are fundamental for
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designing safety critical systems, such as life support systems [6],
satellite docking systems [7] and wind turbines [8]. The safety
verification problem is well-studied for ODE systems (see the
survey paper [9]). Methods based on the approximation of the
reachable sets are considered in [10] for linear systems and in
[11] for nonlinear systems. Another method for safety verification,
which does not require the approximation of reachable sets, uses
barrier certificates. Barrier certificates [12] were introduced for
model invalidation of ODEs with polynomial vector fields and
have been used to address safety verification of nonlinear and
hybrid systems [13] and safety analysis of time-delay systems [14].
Exponential barrier functionswere proposed in [15] for finite-time
regional verification of stochastic nonlinear systems. Moreover,
compositional barrier certificates and converse results were stud-
ied in [16] and [17,18], respectively.

The application of barrier certificates goes beyond just anal-
ysis. Inspired by the notion of control Lyapunov functions [19]
and Sontag’s formula [20], Wieland and Allgöwer [21] introduced
control barrier functions (CBFs) and formulated a controller syn-
thesis method that ensures safety with respect to an unsafe set.
This has sparked several subsequent studies on control barrier
functions [22,23].

In this paper, we study the safety verification problem for
PDEs using barrier certificates. The proposed method employs a
functional of the dependent and independent variables called the
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barrier functional. We show that the safety verification problem
can be cast as the existence of a barrier functional satisfying a
set of integral inequalities. For PDEs with polynomial data, we
demonstrate that the associated integral inequalities can be solved
using semi-definite programming (SDP) based on the results in
[24], which were also used in [5] to solve dissipation inequalities
for PDEs and in [25] for input–output analysis of fluid flows. In this
respect, we formulate an S-procedure-like scheme for checking
integral inequalities subject to a set of integral constraints. The
proposed method is illustrated by two examples.

A preliminary application of the proposed method to bounding
nonlinear output functionals of nonlinear time-dependent PDEs
was discussed in [26]. In this regard, a scheme for bounding linear
output functionals of linear stationary PDEs using SDPs was pre-
sented in [27] based onmoment relaxation techniques. In addition,
amoment-relaxation-basedmethodwas formulated in [28] to find
smooth approximations of the solutions to nonlinear stationary
PDEs using a finite-difference discretization of the domain and
maximum entropy estimation.

This paper is organized as follows. In the next section, we
present some preliminary definitions. In Section 3, we describe
a method based on barrier functionals for safety verification of
PDEs. In Section 4, we discuss the computational formulation of
the barrier functionals method and describe a scheme for verifying
integral inequalities subject to integral constraints. We illustrate
the proposed results using two examples in Section 5 and conclude
the paper in Section 6.

Notation: The n-dimensional Euclidean space is denoted by Rn

and the set of nonnegative reals by R≥0. The n-dimensional set of
positive integers is denoted by Nn, and the n-dimensional space
of non-negative integers is denoted by Nn

≥0. We use M ′ to denote
the transpose of matrix M . The set of real symmetric matrices is
denoted Sn

= {A ∈ Rn×n
| A = A′

}. The ring of polynomials on a
real variable x is denoted R[x], and, for f ∈ R[x], deg(f ) denotes
the degree of f in x. A domain Ω is an open subset of Rn and the
boundary of Ω is denoted ∂Ω . The space of k-times continuous
differentiable functions defined on Ω is denoted by Ck(Ω) and the
space of Ck(Ω) functions mapping to a set Γ is denoted Ck(Ω; Γ ).
For a multivariable function f (x, y), we use f (x, ·) ∈ Ck

[x] to
denote the k-times continuous differentiability of f with respect to
variable x. If p ∈ C1(Ω), then ∂xp denotes the derivative of p with
respect to variable x ∈ Ω . In addition, we adopt Schwartz’s multi-
index notation. For u ∈ Cα(Ω;Rm), Ω ∈ Rn, α ∈ N≥0, defining
matrix A ∈ Nσ (m,α)×n

≥0 , σ (n, α) =
(n+α)!
n!α!

(denote its ith row Ai) which
contains a set of ordered elements satisfying ΣjAij ≤ α, we have

Dαu :=
(
u1, ∂xu1, . . . , ∂

Aσ
x u1, . . . , um, ∂xum, . . . , ∂Aσ

x um
)
,

where ∂
Ai
x (·) = ∂

Ai1
x (·) · · · ∂Ain

x (·). We use the same multi-index no-
tation to denote a vector ofmonomials up to degree α on a variable
x as ηα(x). For instance, for x ∈ R2, η2(x) = (1, x1, x2, x21, x1x2, x

2
2).

The Hilbert space of functions defined over the domain Ω with
the norm ∥u∥Wp

Ω
=

(∫
Ω

∑p
i=0(∂xiu)

′(∂xiu) dx
) 1

2 is denotedWp
Ω . By

f ∈ L2(Ω; Γ ), we denote a square integrable function mapping
Ω ⊆ Rn to Γ ⊆ Rm. Also, for an operator A , Dom(A ) and Ran(A )
denote its domain and range, respectively. The notation ⌈·⌉denotes
the ceiling function.

2. Preliminaries

In this section, we present some definitions and preliminary
results. We study a class of forward-in-time PDE systems. Let U be
a Hilbert space. Consider the following differential equations⎧⎪⎨⎪⎩

∂tu(t, x) = Fu(t, x), x ∈ Ω ⊂ Rn, t ∈ [0, T ],

y(t) = H u(t, x)
u(0, x) = u0(x) ∈ U0 ⊂ Dom(F )
u ∈ Ub

(1)

where Ub is a subspace of U , the state-space of system (1), defined
by the boundary conditions, H : U → R and Dom(H ) ⊇ U . It is
assumed that (1) is well-posed. Appendix A reviews some aspects
of the well-posedness of PDEs. While these results are important,
studying the well-posedness of system (1) is beyond the scope of
the current paper.

We call the set

Yu =
{
u ∈ U | H u ≤ 0

}
,

the unsafe set.
Consider the following properties of trajectories related to an

initial set U0 and an unsafe set Yu.

Definition 2.1 (Safety at Time T ). Let u ∈ U . For a set U0 ⊆ U ,
an unsafe set Yu, satisfying U0 ∩ Yu = ∅, and a positive scalar T ,
system (1) is Yu-safe at time T , if the solutions u(t, x) of system (1)
satisfy y(T ) ̸∈ Yu for all u(0, x) ∈ U0.

Definition 2.2 (Safety). System (1) is Yu-safe, if it is safe with
respect to Yu in the sense of Definition 2.1 for all T > 0.

We are interested in solving the following problem:

Problem 2.3. Given sets Yu, U0 and a constant T > 0, verify that
system (1) is Yu-safe at time T .

To this end, we define a time-dependent functional of the states
of the PDE and time

B(t, u) = B(t)u, (2)

where B : Dom(B) → R. We refer to this functional as the barrier
functional. Note that this extension of barrier certificates [12]
enables us to address sets that are defined on infinite-dimensional
spaces. In the subsequent section, we show that the barrier func-
tional provides themeans to characterize a barrier between the set
of initial conditions and the unsafe set.

3. Barrier functionals for safety verification of PDEs

In this section, we present conditions to obtain certificates that
trajectories starting in the set U0 are Yu-safe at a particular time
instant T . Such a formulation also allows obtaining performance
estimates whenever the unsafe set represents a performance in-
dex.

Next, we provide a solution to Problem 2.3 based on the con-
struction of barrier functionals satisfying a set of inequalities.

Theorem3.1 (Safety Verification for Forward PDE Systems). Consider
the PDE system described by (1). Let u ∈ Ub. Given a set of initial
conditions U0 ⊆ Ub, an unsafe set Yu, such that U0 ∩ Yu = ∅, and a
constant T > 0, if there exists a barrier functional B(t, u(t, x)) ∈ C1

[t]
as in (2), such that the following inequalities hold

B(T , u(T , x)) − B(0, u0(x)) > 0, ∀u(T , x) ∈ Yu, ∀u0 ∈ U0, (3a)

dB(t, u(t, x))
dt

≤ 0, ∀t ∈ [0, T ], ∀u ∈ Ub, (3b)

where d(·)
dt denotes the total derivative, along the solutions of (1), then

the solutions of (1) are Yu-safe at time T (cf. Definition 2.1).

Proof. The proof is by contradiction. Assume there exists a solution
of (1) such that, at time T , u(T , x) ∈ Yu and inequality (3a) holds.
From (3b), it follows that
dB(t, u(t, x))

dt
≤ 0, (4)
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