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a b s t r a c t

Real time trajectory optimization is critical for robotic systems. Due to nonlinear system dynamics and
obstacles in the environment, the trajectory optimization problems are highly nonlinear and non convex,
hence hard to be computed online. Liu, Lin and Tomizuka proposed the convex feasible set algorithm
(CFS) to handle the non convex optimization in real time by convexification. However, one limitation of
CFS is that it will not converge to local optimawhen there are nonlinear equality constraints. In this paper,
the slack convex feasible set algorithm (SCFS) is proposed to handle the nonlinear equality constraints,
e.g. nonlinear system dynamics, by introducing slack variables to relax the constraints. The geometric
interpretation of themethod is discussed. The feasibility and convergence of the SCFS algorithm is proved.
It is demonstrated that SCFS performs better than existing non convex optimization methods such as
interior-point, active set and sequential quadratic programming, as it requires less computation time and
converges faster.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Although great progresses have been made in motion planning
for robotic systems [1], challenges remain in real time planning in
dynamic uncertain environment. The applications include but are
not limited to real time navigation [2], autonomous driving [3],
robot arm manipulation and human robot cooperation [4]. To
achieve real time safety and efficiency, the robot motion should be
re-planned from time to time when new information is obtained
during operation, which requires the motion planning algorithms
to run fast enough online.

This paper focuses on optimization-based motion planning,
where an ideal low level tracking controller is assumed. The
method fits into the framework of model-predictive control
(MPC) [5], where an optimal trajectory is obtained by solving a
constrained optimization or optimal control problem in receding
horizons. The optimization problem may be highly nonlinear due
to the dynamic constraints, and highly non convex due to the
constraints for obstacle avoidance, which makes it hard to be
solved online.

Convexification [6] is a popular way to deal with non convexity
by transforming the non convex problem into a convex one. One
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popular convexification method is the sequential quadratic pro-
gramming (SQP), which approximates the non convex problem as
a sequence of quadratic programming (QP) problems and solves
them iteratively. References for SQP can be founded in [7] and [8].
The method has been successfully applied to offline robot motion
planning as discussed in [9] and [10]. However, as SQP is designed
for general purpose, the unique geometric structure of the motion
planning problems is neglected. As a consequence, it is hard to use
for real time applications.

In practice, the cost function for motion planning is usually
designed to be convex [11,12], while the non convexity mainly
comes from the physical constraints, e.g. obstacles. Regarding this
observation, the convex feasible set algorithm (CFS) [13] was pro-
posed to handle motion planning problems with convex objective
functions and non convex inequality constraints. The idea of the
CFS algorithm is to transform the origin problem into a sequence
of convex subproblems by obtaining convex feasible sets within
the non convex inequality constraints, and then iteratively solve
the convex subproblems until solutions converge. The difference
between CFS and SQP lies in the methods in obtaining the convex
subproblems, where the geometric structure of the motion plan-
ning problem is fully considered in CFS.

However, one limitation of CFS is that it may not converge to
local optima under nonlinear equality constraints (such as nonlin-
ear dynamic constraints) as the convex feasible set for a nonlinear
equality constraint may reduce to a singleton point.

In this paper, the slack convex feasible set algorithm (SCFS)
is introduced to handle optimization problems with convex cost
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functions and non convex equality and inequality constraints.
The idea is to relax the nonlinear equality constraints to several
nonlinear inequality constraints using slack variables and then
solve the relaxed problem using CFS. The feasibility, convergence
and optimality of the algorithm will be proved in the paper. The
performance of SCFS will be compared to that of SQP as well as
other existing non convex optimization algorithms.

The remainder of the paper will be organized as follows: in
Section 2, a benchmark motion planning problem is proposed;
Section 3 reviews the convex feasible set algorithm; Section 4
introduces the slack convex feasible set algorithm; Section 5 illus-
trates the performance of SCFS; Section 6 concludes the paper.

2. Problem formulation

2.1. The notations

Denote the state of the robot as x ∈ X ⊂ Rn where X represents
n dimensional state space. Denote the control input of the robot as
u ∈ U ⊂ Rm where U represents m dimensional control space.1
Suppose the robot needs to travel from xstart to xgoal. The robot
trajectory is denoted as x = [xT0, x

T
1, . . . , x

T
h ]

T
∈ Xh+1 where xq is

the robot state at time step q and h is the planning horizon.Without
loss of generality, the sampling time ts is assumed to be 1. Similarly,
the input trajectory is denoted as u = [uT

0, u
T
1, . . . , u

T
h−1]

T
∈ Uh

where uq is the robot input at time step q. Let uj
q denote the jth

entry in uq for j = 1, . . . ,m.

2.2. The benchmark problem and the assumptions

Problem 1 (The Benchmark Problem). Consider the following opti-
mization problem

min
x,u

J(x,u) (1)

s.t. x ∈ Γ ,u ∈ Ω, G(x,u) = 0, (2)

where J : Xh+1
× Uh

→ R is the cost function; Γ is the
constraint on the augmented state space Xh+1;Ω is the constraint
on the augmented control space Uh; and G : Xh+1

× Uh
→ Rmh

represents the dynamic relationship between states and inputs.
Assumptions 2 to 6 are required.

Assumption 2 (Cost Function). The cost function J(x,u) = J1(x) +

J2(u) is smooth and bounded below by 0. J1 is strictly convex. J2 is
strictly convex and symmetric, and it achieves minimum at u = 0.

Assumption 3 (State Constraint). The constraint Γ is a collection
of linear equality constraints, linear inequality constraints and N
nonlinear inequality constraints, i.e. Γ = ∩iΓi where

Γi =

{
{x : φi(x) ≥ 0} i = 1, . . . ,N
{x : Aeqx = beq} i = N + 1
{x : Ax ≤ b} i = N + 2,

(3)

Aeq ∈ Rkeq×n(h+1), beq ∈ Rkeq , A ∈ Rk×n(h+1), and b ∈ Rk.
keq < n(h + 1) and k are the dimensions of the constraints.
rank(Aeq) = keq. Function φi : Rn(h+1)

→ R is continuous, piece-
wise smooth and semi-convex, e.g. there exists a positive semi-
definite matrix H∗

i ∈ Rn(h+1)×n(h+1) such that for any x, v ∈ Rn(h+1),
φi(x+v)−2φi(x)+φi(x−v) ≥ −vTH∗

i v. Moreover, the interior of
the inequality constraints is nontrivial, i.e. ∩i{x : φi(x) > 0} ̸= ∅.2

1 Control input u is not necessarily a physical input (such as the throttle angle
for a vehicle). It can be any parameter that needs to be considered in the trajectory
optimization (such as the yaw rate of a vehicle).
2 This is to exclude the case that some combination of nonlinear inequality

constraints indeed forms a nonlinear equality constraint, such as Γ = {x : φi(x) ≥

0,−φi(x) ≥ 0}.

The linear equality constraints are for boundary conditions at
the start point and the goal point. The linear inequality constraints
are for state limits. The nonlinear equality constraints are for
collision avoidance where φi can be identified as a signed distance
function to an obstacle. The semi-convexity assumption on φi is
satisfied if there is no concave corner in the obstacle.

Assumption 4 (Control Constraint). The constraint Ω is a box
constraint such that −ū ≤ u ≤ ū for some constant vector
ū := [ū1

0, . . . , ū
m
h−1]

T > 0 where ūj
q ∈ R+ is the bound for uj

q for all
q and j.

Assumption 5 (Dynamic Constraint). The dynamic equation
G(x,u) = 0 is affine in u, i.e. there exist smooth functions F :

Xh+1
→ Rmh and H : Xh+1

→ Rmh×mh such that

G(x,u) = F (x) + H(x)u = 0. (4)

H is assumed to be diagonal, non-singular and positive definite.
Eq. (4) is equivalent to

f jq(x) + hj
q(x)u

j
q = 0,∀q = 0, . . . , h − 1, j = 1, . . . ,m, (5)

where f jq : Xh+1
→ R and hj

q : Xh+1
→ R+ are entries in F and H ,

which are smooth with bounded derivatives and Hessians.

Eqs. (4) and (5) cover a wide range of typical nonlinear dynamic
systems. For robot arms, let x be the robot joint position and u be
the torque input, then the relationship between x and u is in the
form of (5), i.e.

M(xq)(xq+1 − 2xq + xq−1) + N(xq, xq − xq−1) = uq, (6)

whereM(·) is the generalized inertia matrix and N(·, ·) is the Cori-
olis and centrifugal forces. Finite differences are used to compute
joint velocity and joint acceleration.

Since the input u may not be physical, the dynamic equation
can also be understood in a broader sense, which is just an equa-
tion that captures the relationship between the state x and the
parameter u that needs to be optimized. For example, in trajectory
planning for automated vehicles, the yaw rate of the trajectory
needs to be minimized. Let x be the position of the rear axle of
the vehicle and u be the yaw rate, then the relationship between
the yaw rate and the vehicle state assuming no tire slip ((7) below)
satisfies (5),

(xq − xq−1) × (xq+1 − xq) = ∥xq − xq−1∥
2uq, (7)

where × denotes the cross product.
Moreover, the state x can also be non physical. For example, in

speed profile planning for a given path [14], the state x is chosen
as the time stamps along the path, while the path is sampled
evenly with distance d. The input u is chosen to be the speed. The
relationship between x and u ((8) below) also satisfies (5),

d
xq − xq−1

= uq. (8)

By Assumptions 3 to 5, the constraints in (2) form a K dimen-
sional manifold M where K = n(h + 1) − keq.3 In order for the
optimization to be nontrivial, the manifold M should have non
empty interior, which leads us to the following assumption.

Assumption 6 (Connected Nontrivial Domain). The domain that
satisfies (2) is connected. There exist x∗ and u∗ that satisfy all the
constraints in (2) such that Ax∗ < b, φi(x∗) > 0 for all i and
−ū < u∗ < ū.

3 The dimension of the decision variables x and u is n(h + 1) + mh. As there are
keq+mh independent equality constraints, the dimension of themanifold is reduced
to n(h + 1) − keq .
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