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a b s t r a c t

The stability of the Kalman filter is classically ensured by the uniform complete controllability regarding
the process noise and the uniform complete observability of linear time varying systems. This paper
studies the case of discrete time output error (OE) systems, inwhich the process noise is totally absent. The
classical stability analysis assuming the controllability regarding the process noise is thus not applicable.
It is shown in this paper that the uniform complete observability is sufficient to ensure the stability of the
Kalman filter applied to time varying OE systems, regardless of the stability of the OE systems. Though
the continuous time case has been studied recently, the results on continuous time systems cannot be
directly transposed to discrete time systems, because of a difficulty related to the observability of the
discrete time filter error dynamics system.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The well known Kalman filter has been extensively studied and
is being applied in many different fields [1–5]. The purpose of the
present paper is to study the stability of the Kalman filter in a
particular case not yet covered in the literature: the absence of
process noise in the state equation of a discrete time linear time
varying (LTV) system. Such systems are known as output error
(OE) systems in the literature on system identification. The recent
studies on continuous time OE systems in [6,7] have been mainly
motivated by applications where state equations originate from
physical laws that are believed sufficiently accurate. For discrete
time systems considered in this paper, the motivation is mainly
for OE system identification [8–10]. In control applications, the
use of OE models has the advantage of focusing system identi-
fication on the dynamics of the controlled plant, rather than on
noise properties [9]. The result presented in this paper ensures the
stability of the Kalman filter applied to LTV OE systems. This result
is particularly useful for linear parameter varying (LPV) system
identification based on prediction errorminimization, as it ensures
stable predictions, regardless of the stability of the estimated LPV
models during the iterations of prediction error minimization.

While the optimal properties of the Kalman filter are frequently
recalled, its stability properties are less often mentioned in the
recent literature. The classical stability analysis is based onboth the
uniformcomplete controllability regarding the process noise and the
uniform complete observability of LTV systems [2,11]. In the case
of OE systems, there is no process noise at all in the state equation,
hence the controllability regarding the process noise cannot be
fulfilled.
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The stability of the Kalman filter for continuous timeOE systems
has been recently studied in [6,7]. It is often straightforward to
transpose theoretic results from continuous time systems to dis-
crete time systems, and vice versa, but there are exceptions. For the
stability problem studied in this paper, there are two main extra
difficulties for discrete time systems.

First, in the continuous time case, the observability of an OE
system induces the observability of its Kalman filter error dynam-
ics system, and this observability plays an important role in the
stability analysis of the error dynamics. In the discrete time case,
however, the observability of the Kalman filter error dynamics sys-
tem cannot be induced in a similar way, as explained in Section 5.

Second, in the continuous time case, in the first step of the proof
of the Kalman filter asymptotic stability, the Lyapunov stability is
naturally proved within a few lines in [7]. In the discrete time case,
however, by indirectly analyzing the Kalman filter error dynam-
ics, due to the complexity related to the separation between the
prediction step and the update step (no such separation exists in
the continuous time case), the proof of the Lyapunov stability takes
more than half a page (see the proof of Theorem 1 in this paper),
with non trivial choices of appropriate equalities involved in the
discrete time case only.

The classical optimality results of the Kalman filter are also valid
in the case of OE systems [2, chapter 7]. However, it is necessary
to complete the stability analysis, as the classical results are not
applicable in this case.

As the main contribution of this paper, it will be shown that
the uniform complete observability is sufficient to guarantee the
stability of the dynamics of the Kalman filter applied to a discrete
time LTV OE system, regardless of the stability of the OE system itself.
The boundedness of the state estimate covariance, as well as the
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boundedness of the Kalman gain, will also be proved under the
same condition. These results complete the classical results [2,11],
which do not cover the case of OE systems.

Preliminary results of this study have been presented at the
IFAC Word Congress [12]. The present paper enriches these pre-
liminary results with technical details, notably the relationship be-
tween the Kalman filter error dynamics and the Kalman predictor
error dynamics, and also with numerical examples.

The rest of this paper is organized as follows. Some preliminary
elements are introduced in Section 2. The problem considered in
this paper is formulated in Section 3. The boundedness of the
Kalman filter for OE systems is analyzed in Section 4, and the
asymptotic stability of the Kalman filter is established in Section 5.
Numerical examples are presented in Section 6. Finally, concluding
remarks are drawn in Section 7.

2. Definitions and basic facts

Letm and n be any twopositive integers. For a vector x ∈ Rn, ∥x∥
denotes its Euclidean norm. For a matrix A ∈ Rm×n, ∥A∥ denotes
the matrix norm induced by the Euclidean vector norm, which is
equal to the largest singular value of A. Then ∥Ax∥ ≤ ∥A∥∥x∥ for all
A ∈ Rm×n and all x ∈ Rn. For two real square symmetric positive
definite matrices A and B, A > Bmeans A − B is positive definite.

Let A(k) ∈ Rm×n be a sequence of matrices for k = 0, 1, 2, . . .. It
is said (upper) bounded if ∥A(k)∥ is bounded.

Consider the homogeneous discrete time LTV system

x(k) = A(k)x(k−1) (1)

with x(k) ∈ Rn and A(k) ∈ Rn×n, and with the associated state
transition matrix defined as

Φ(k, k) = In (2)
Φ(k, l) = A(k)A(k−1) · · · A(l + 1) (3)

with In denoting the n× n identity matrix. Then x(k) = Φ(k, l)x(l).

Definition 1. System (1) is Lyapunov stable if there exists a positive
constant γ such that, for all integers k, k0 satisfying k ≥ k0, the
following inequality holds

∥Φ(k, k0)∥ ≤ γ . □ (4)

Definition 2. System (1) is asymptotically stable if it is Lyapunov
stable and if the following limiting behavior holds

lim
k→+∞

∥x(k)∥ = 0 (5)

for any initial state x(0) ∈ Rn. □

The following uniform complete observability1 definition for
LTV systems follows [11].

Definition 3. The matrix pair {A(k), C(k)} with A(k) ∈ Rn×n

and C(k) ∈ Rm×n is uniformly completely observable if there exist
positive constants ρ1, ρ2 and a positive integer h such that, for all
k ≥ h, the following inequalities hold

ρ1In ≤

k∑
s=k−h

ΦT (s, k)CT (s)R−1(s)C(s)Φ(s, k) (6)

≤ ρ2In (7)

with some bounded symmetric positive definite matrix R(s) ∈

Rm×m (typically the covariance matrix of the output noise in a
stochastic state space system). □

1 Some variants of the definition of the uniform complete observability exist in
the literature. The definition recalled here follows [11].

3. Problem formulation and assumptions

In this section the considered OE system and its Kalman filter
are first formulated, before the statement of the assumptions for
stability analysis.

3.1. Output error system and Kalman filter

The discrete time output error (OE) systems considered in this
paper are in the form of

x(k) = A(k)x(k−1) + B(k)u(k) (8a)

y(k) = C(k)x(k) + R
1
2 (k)v(k) (8b)

where k = 0, 1, 2, . . . represents the discrete time index, x(k) ∈

Rn is the state vector, u(k) ∈ Rl the input, y(k) ∈ Rm the
output, v(k) ∈ Rm a white Gaussian noise with identity covariance
matrix, A(k), B(k), C(k), R(k) are real matrices of appropriate sizes.
The noise covariance matrix R(k) is symmetric positive definite.
The notation R

1
2 (k) denotes the symmetric positive definite matrix

square root of R(k). The initial state x(0) ∈ Rn is a random vector
following the Gaussian distribution x(0) ∼ N (x0, P0) with x0 ∈ Rn

and P0 ∈ Rn×n.
Compared to the general discrete time state equation

x(k) = A(k)x(k − 1) + B(k)u(k) + Q
1
2 (k)w(k) (9)

with the process noise w(k) and the covariance matrix Q (k), an OE
system corresponds to the particular case of Q (k) ≡ 0.

After the initialization with P(0|0) = P0 and x̂(0|0) = x0,
the Kalman filter for the OE system (8) consists of the following
recursions for k = 1, 2, . . . ,

P(k|k−1) = A(k)P(k−1|k−1)AT (k) (10a)

Σ(k) = C(k)P(k|k−1)CT (k) + R(k) (10b)

K (k) = P(k|k−1)CT (k)Σ−1(k) (10c)
P(k|k) = [In − K (k)C(k)]P(k|k−1) (10d)

x̂(k|k−1) = A(k)x̂(k−1|k−1) + B(k)u(k) (10e)
ỹ(k) = y(k) − C(k)x̂(k|k−1) (10f)

x̂(k|k) = x̂(k|k−1) + K (k)ỹ(k). (10g)

For general LTV systems with a process noise as in the state
equation (9), the first equation of the Kalman filter would be

P(k|k − 1) = A(k)P(k − 1|k − 1)AT (k) + Q (k) (11)

with an extra term Q (k) representing the process noise covariance
matrix. Therefore, the OE system Kalman filter corresponds to the
particular case with Q (k) ≡ 0 of the general LTV system Kalman
filter.

It is known that the dynamics of the general LTV systemKalman
filter is stable, provided the matrix pair {A(k),Q

1
2 (k)} is uniformly

completely controllable and the matrix pair {A(k), C(k)} is uni-
formly completely observable [2,11]. As OE systems correspond
to the case with Q (k) ≡ 0, the controllability condition cannot
be satisfied. Consequently, the classical results on the stability of
the Kalman filter cannot be applied here. The main purpose of
the present paper is to study the Kalman filter stability in this
particular case.

Itwill be shown that the error dynamics of theKalman filter (10)
is asymptotically stable, and that its iteratively computed variables
are all bounded.

Note that the classical optimality results of the Kalman filter
remain valid in the case of OE systems [2, chapter 7].
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