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a b s t r a c t

This paper is concerned with the problem of constructing a controllable graph subject to some practical
edge constraints. Specifically, suppose the total amount of vertices and the upper bounds on the graph
diameter or on the vertex degree are given.We consider the problemof exploring a class of feasible graphs
that satisfy the constraints. Using the hybrid of a path graph and an antiregular graphwe propose a simple
and systematic method to generate a class of controllable graphs whose diameters or degrees cover the
full possible ranges. The method to select the control vector to ensure the controllability of the combined
graph is also proposed. Numerical examples are provided to demonstrate our results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The study of dynamical systems defined on graphs is one of the
most popular themes in the area of system and control engineering
in the past decade. The systems are in various forms of networks
that connect smaller subsystems, known as agents, to accomplish
pre-specified tasks cooperatively [1,2]. For example, in engineering
practice a group of robots might be used to form a multi-agent
system (MAS) to monitor, detect, or search objects in a perilous
place. Similar applications involving coordination and cooperation
can be seen in manufacture automation, wide-field monitoring,
or even in data mining and machine learning. Many additional
issues, which do not appear in the single-unit system, are raised
in maneuvering a multi-agent system. The need to address the
issues of, for instance, coordination [3], formation [4], flocking [5]
and topology switching of these agents [6] manifests itself in the
operations of a group of robots or drones. As control signals are
continuously injected into the system, the state information of
each unit is exchanged locally and then passed throughout the
entire network. The performance of the system is thus determined
by the effectiveness and efficiency of the state evolution. To ensure
that any agent state can be effectively driven to any desired point
in a finite time, the multi-agent system must be controllable. To
efficiently drive these agent states,we expect the system topossess
some internal structural property that leads to, possibly, relatively
less energy consumption. The controllability problem is one of the
main topics in the theory of multi-agent systems. The standard
approach is to formulate the problem in the context of controlled
linear and time-invariant (LTI) system following the consensus
policy. This formulation relates the multi-agent system naturally
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to the graph model: the vertex set records the state variables and
the edge set reflects the interactions between these variables, and
results in the problem of Laplacian controllability of a graph. Due
to Kalman, and to Popov, Belevitch and Hautus, the controllability
can be checked from the rank fullness of the associated matrices
[7, p. 145]. However, in the system whose number of agents
reaches hundreds or more, one needs to check the rank of a very
high-dimensional matrix and the computation result suffers from
numerical inaccuracy. A natural approach is to leverage the graph
model and applies the rich graph-theoretic results to the controlla-
bility analysis of MAS. Actually, a classical partition scheme in the
graph theory was applied to catch the symmetry, in some sense,
of the connecting structure and a sufficient condition based on
the scheme for the system uncontrollability was proposed [8–10].
This graph-theoretic approach was later improved such that the
lower and upper bounds based on the distance partitions and almost
equitable partitions, respectively, can bederived for the controllable
subspaces [11]. The elegance of the results is that the partition-
ing test is easily applicable to general graphs. However, this ap-
proach provides only partial results and leaves the controllability
of many MASs inconclusive. Some researchers turned to explore
the class of graphs that have specific connecting patterns, such as
the paths [12],multichains [10,13], grids [14], circulant graphs [15]
and complete graphs [16], and obtained abundant controllability
results. The third line of research [17] is on the so-called zero
forcing set/zero forcing number and their close relationship with
the minimum rank problem of patterned matrices [18]. Though
computing the zero forcing number and finding a minimum zero
forcing set are in general not easy [19], zero forcing sets was used
for controllability analysis of linear systems. A sufficient condition
based on the sets for the controllability of graphs that are undi-
rected and have specific property (e.g., the off-diagonal entries of
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the matrices carrying the structures of graphs have the same sign)
was proposed [20]. This approach is powerful in determining the
general controllability of a family of graphs, but, except for the
extreme cases such as paths, circles and complete graphs, it is
not widely applicable to other graphs with irregular distributions
of vertex degrees when it comes to the Laplacian controllability.
Though the Laplacian controllability of some classes of graphs is
well-studied, they might demonstrate significantly different prop-
erties. For a k-vertex simple and connected graph, the vertex de-
gree and the diameter range from 1 to k−1. These two parameters
are intimately related to the construction cost and performance of
the system, and are quite often subject to constraints in practice.
For example, two classes of controllable graphs are the path graphs
and a special kind of threshold graphs, known as the antiregular
graphs [21], i.e., the class of simple and connected graphs having
exactly two vertices with the same degrees. It was proved that
any k-vertex graph in these two classes is controllable by a single
controller. In Fig. 1 we compare the minimum-energy realizations
of driving the states defined on these two graphs (both with 8
vertices and the same control vector) from−10 [ 1 1 1 1 1 1 1 1 ]

T to
10 [ 1 1 1 1 1 1 1 1 ]

T in 10 seconds. The figure suggests that driving
the states on an antiregular graph (shown in Fig. 2 (a)) is easier
than on a path graph (in Fig. 2 (f)), in the sense that the consumed
energy is less and the state transitions are smoother. Nevertheless,
the ease comes at a price that the maximum vertex degree in an
antiregular graph is up to k−1, compared to 2 in a path graph. The
discussion above leads to a very practical problem: can we design
a k-vertex graph that is controllable and at the same time its graph
diameter or vertex degree is upper bounded?

In this paper we give a positive answer to the design problem
above. Specifically, we propose

1. a simplemethod to combine a path graph and an antiregular
graph such that the resulting graph is still single-input con-
trollable and meets the constraint that imposes any mean-
ingful upper bound on the graph diameter or on each vertex
degree;

2. a simple method to identify the class of control vectors
that guarantee the controllability of the combined graph. In
particular, we show that this class is closely related to the
one that renders the original antiregular graph controllable.

The contributions of our results are twofold. Firstly, we adopt
a quite different approach to expanding the known class of con-
trollable graphs from the conventional way that explores only the
spectral properties of special Laplacian matrices [12,14–16,22,23].
Our approach shows the possibility to form a controllable graph
fromahybrid of somewell-knowngraphs. This possibility is crucial
in exploring the controllability of general graphs whose Lapla-
cian eigenspace properties are difficult to analyze. Secondly, our
result serves as an example that the optimality, in some appro-
priate sense, and the controllability of a graph can be achieved
simultaneously. This result is a pioneering example of a successful
optimality–controllability co-design, and should motivate more
studies on the network design issues for practical purposes.

The rest of this paper is organized as follows. In Section 2 we
review the basic concepts in the graph theory and use them to
model the controlled evolution of a multi-agent system in the
context of a linear time invariant system. In Section 3 we present
our main results on the method to construct a class of controllable
graphs based on the combination of path graphs and antiregular
graphs. Numerical examples are provided to illustrate the wide
range of graph parameters, such as the diameters and maximum
vertex degree, that the method can generate. The paper is con-
cluded in Section 4 where some interesting future research topics
are discussed.

2. Preliminaries

We begin with some standard notations and fundamental con-
cepts used in the paper. Let R and N be the sets of real and
natural numbers, respectively. 1k and 0k are the column vectors
of 1’s and 0’s, respectively, with size k. Occasionally we skip the
subscript when the context is clear. I is the identity matrix whose
ith column vector is written as ei. The set of indices up to k is
Ik := {1, 2, . . . , k}. The set difference of two sets S1 and S2 is S1 \S2,
defined as {s|s ∈ S1, s ̸∈ S2}. ⌊x⌋ and ⌈x⌉ are the largest integer not
greater than x and the smallest integer not less than x, respectively.
Suppose P is a matrix of order k, meaning that P ∈ Rk×k, λ ∈ R and
v ∈ Rk. (λ, v) is called an eigenpair of P if Pv = λv. If V = Ik and
E is a subset of { (v1, v2) | v1, v2 ∈ V }, then G := (V , E) describes a
k-vertex graphwhere E is called the edge set ofG, and V the vertex
set or node set. v1 and v2 are neighbors if v1, v2 ∈ V and (v1, v2) ∈

E. The neighbor set Nv of the vertex v is {u | (v, u) ∈ E}. The
degree of vertex v is defined as |Nv|, i.e., the cardinality ofNv or the
number of elements in Nv . A vertex is called the terminal vertex if
its degree is 1. It is called the dominating vertex if it is connected to
all other vertices in the same graph. A path between vertices v1 and
v2 is a subset {(v1, u1), (u1, u2), (u2, u3), . . . , (um−1, um), (um, v2)}
of E where u1, u2, . . . , um ∈ V . The number of edges in the shortest
path connecting v1 and v2 is called the distance between vertices
v1 and v2. Among the distances between any pair of vertices of a
graph, the greatest one is defined as the diameter of the graph. A
graph is connected if for every two different vertices there exists
a path connecting them. A graph is undirected if its edges have no
orientation. Namely, if (v1, v2) is in the edge set of the graph then
(v1, v2) is not an ordered pair. A graph is unweighted if its edges
share the same weight. An undirected and unweighted graph is
simple if it has no self-loops and nomultiple edges. It is not difficult
to see that a simple and connected graph should have at least two
vertices with the same degree. If all vertices have the same degree,
say d, then it is called a d-regular graph. In particular, it is called a
complete graph if d = k − 1 where k is the number of all vertices
in the graph. On the other hand, if there are exactly two vertices
with the same degree, it is called an antiregular graph. Let di be the
degree of the ith vertex of a k-vertex graph and satisfies di ≥ di+1
for each i ∈ Ik−1. Define d∗

i := |j : dj ≥ i| and t̃ := |j : dj ≥ j|. If

k∑
i=1

(di + 1) =

k∑
i=1

d∗

i , ∀k ∈ {1, 2, . . . , t̃},

then the graph is called a threshold graph or maximal graph [24].
One can verify that a k-vertex antiregular graph must be a thresh-
old graph and its only repeated vertex degree is ⌊

k
2⌋. A k-vertex

simple and connected graph is called a path graph or simply a path
if its diameter is up to k − 1. It is easy to see that among the class
of simple and connected graphs with the same number of vertices,
if a graph has a dominating vertex, its diameter is at most 2 and
its maximum vertex degree is the largest. A path graph has the
largest diameter but its maximum vertex degree is the smallest. A
complete graph has the smallest diameter but its maximum vertex
degree is the largest. See [25,26] for more properties and concepts
in the graph theory. Suppose a graphG(V , E) is given. Let D be the
diagonal matrix with its ith diagonal term being the degree of the
ith vertex. LetA be the adjacent matrix of the graph, meaning that
its (i, j)th element is 1 if (i, j) ∈ E and is 0 otherwise. The Laplacian
matrix L of the graph is defined as

L := D − A.

When we say the Laplacian eigenvalues or Laplacian eigenvec-
tors of a graph, we mean the eigenvalues or eigenvectors of L
corresponding to the graph. In our framework, we consider only
the class of simple and connected graphs. Thus the corresponding
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