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a b s t r a c t

We analyze the partial exact controllability problem for wave equations. The goal is to drive part of the
solution to a destination at a given time. The main results are proved by employing the classical theory of
propagation of singularities of wave equations and the compact uniqueness argument.
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1. Introduction

Let (M, g) be a n-dimensional compact smooth Riemannian
manifold with boundary ∂M . Let T > 0. Denote by ∆ the Laplace–
Beltrami operator onM .

The main purpose of this paper is to study the partial exact
controllability problems of following wave equations{ytt − ∆y = χωf in (0, T ) × M,

y = 0 on (0, T ) × ∂M,

y(0) = y0, yt (0) = y1 inM
(1.1)

and{ztt − ∆z = 0 in (0, T ) × M,

z = χΓ h on (0, T ) × ∂M,

z(0) = z0, zt (0) = z1 in M.
(1.2)

In (1.1) (resp. (1.2)), (y0, y1) ∈ H1
0 (M) × L2(M) (resp. (z0, z1) ∈

L2(M)×H−1(M)),ω is an open subset ofM (resp.Γ is an open subset
of ∂M), f ∈ L2((0, T ) × ω) (resp. h ∈ L2((0, T ) × Γ )).

LetM0 ⊂ M be an open subset. The partial exact controllability
of (1.1) and (1.2) with respect toM0 is formulated as follows.

Definition 1.1. System (1.1) is said to be partially exactly con-
trollable if for any given initial data (y0, y1) ∈ H1

0 (M) × L2(M)
and (y2, y3) ∈ H1

0 (M) × L2(M), one can find a control f ∈

L2((0, T )×ω) such that the corresponding solution to (1.1) satisfies
that

(
χM0y(T ), χM0yt (T )

)
=

(
χM0y2, χM0y3

)
.

Definition 1.2. System (1.2) is said to be partially exactly con-
trollable if for any given initial data (z0, z1) ∈ L2(M) × H−1(M)
and (z2, z3) ∈ L2(M) × H−1(M), one can find a control h ∈

L2((0, T )×Γ ) such that the corresponding solution to (1.2) satisfies
that

(
z(T )|M0

, zt (T )|M0

)
=

(
z2|M0

, z3|M0

)
.
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Remark 1.1. Here the notation zt (T )|M0
means the restriction of

the distribution zt (T ) on M0. Recall that one says an element g ∈

H−1(M) equals zero inM0 if for any α ∈ H1
0 (M) which is supported

in M0, ⟨g, α⟩H−1(M),H1
0 (M) = 0.

To guarantee the partial exact controllability of the system (1.1)
and (1.2), we introduce the following two conditions, respectively.

Condition1.1. There is anω0 ⊂⊂ ω such that every optics associated
with the symbol of the wave operator issued at t = 0 and x ∈ M0
intersects the set (0, T ) × ω0.

Condition 1.2. Every optics associated with the symbol of the wave
operator issued at t = 0 and x ∈ M0 intersects the set (0, T ) × Γ at
a non-diffractive point.

We have the following results for the exact controllability of
(1.1) and (1.2).

Theorem 1.1. The system (1.1) is partially exactly controllable with
respect to M0, provided that Condition 1.1 holds.

Theorem 1.2. The system (1.2) is partially exactly controllable with
respect to M0, provided that Condition 1.2 holds.

Following the idea of the Hilbert Uniqueness Method (see [1]
for example), we introduce adjoint systems corresponding to (1.1)
and (1.2), respectively. The adjoint system of (1.1) is{

vtt − ∆v = 0 in (0, T ) × M,

v = 0 on (0, T ) × ∂M,

v(T ) = v0, vt (T ) = v1 in M.
(1.3)

Here

(v0, v1) ∈ HM0

△
= {(f0, f1) ∈ L2(M) × H−1(M) :

supp(f0) ⊂ M0 supp(f1) ⊂ M0}.
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The partial exact controllability of the system (1.1) with respect to
M0 is implied by the following observability estimate

|v0|
2
L2(M) + |v1|

2
H−1(M) ≤ C

∫ T

0

∫
ω

|v|
2dxdt. (1.4)

Here C is a constant which is independent of (v0, v1) ∈ HM0 .
The adjoint system of (1.2) is{

wtt − ∆w = 0 in (0, T ) × M,

w = 0 on (0, T ) × ∂M,

w(0) = w0, wt (0) = w1 in M.
(1.5)

Here

(w0, w1) ∈ H̃M0

△
= {(g0, g1) ∈ H1

0 (M) × L2(M) :

supp (g0) ⊂ M0, supp (g1) ⊂ M0}.

The partial exact controllability of the system (1.2) with respect to
M0 is implied by the following observability estimate

|w0|
2
H1
0 (M)

+ |w1|
2
L2(M) ≤ C

∫ T

0

∫
Γ

⏐⏐⏐∂w

∂ν

⏐⏐⏐2dΓ dt, (1.6)

where C is a constant which is independent of (w0, w1) ∈ H̃M0 .
We can show the following results.

Proposition 1.1. The system (1.1) is partially exactly controllable
with respect to M0, provided that the inequality (1.4) holds.

Proposition 1.2. The system (1.2) is partially exactly controllable
with respect to M0, provided that the inequality (1.6) holds.

Although proofs of Propositions 1.1 and 1.2 are standard dual
argument, for the sake of completeness, we present them in Sec-
tion 2.

From Propositions 1.1 and 1.2, in order to establish the partial
exact controllability, we only need to prove the inequality (1.4) and
(1.6). We have the following two results.

Theorem 1.3. Inequality (1.4) is true, provided that Condition 1.1
holds.

Theorem 1.4. Inequality (1.6) is true, provided that Condition 1.2
holds.

Controllability problems for wave equations have been studied
extensively in the literature (see [1–9] and the rich references
therein). Results in these papers are focused on the exact con-
trollability problems for wave equations with some geometric
conditions on the control domain. Particularly, by the Gaussian
beam solution to wave equations (see [10]), we know that the
geometric control condition is a necessary condition for the exact
controllability of wave equations. In this paper, we handle the
case when the geometric control condition does not hold. In this
case, one cannot expect to get exact controllability. On the other
hand, we show that part of the solution can be exactly controlled.
Although themain idea of proofs of Theorems 1.3–1.4 are the same
as the one in [3,4], we believe that it deserves to provide complete
proofs for them.

2. Some preliminaries

In this section, we recall some useful results for the propagation
of the singularities of the solution to a wave equation involved in a
domain with nonempty boundary.

To begin with, we introduce some notations. For a smooth
manifold N , we write Ṫ ∗N for the set T ∗N \

(
N × {0}

)
, where T ∗N

denotes the cotangent bundle of N . Let us denote by Q the interior
of the cylinder (−∞, +∞) × M , by ∂Q the set (−∞, +∞) × ∂M ,

and by Q the closure of Q . Let O be a neighborhood of Q such
that Q ⊂⊂ O. Write Ṫ ∗Q for the restriction of Ṫ ∗O on Q , Ṫ ∗

b Q for
Ṫ ∗Q ∪ Ṫ ∗∂Q , and Ṫ ∗

∂Q for the conormal bundle to ∂Q in O. Let π be
the canonical projection

π : Ṫ ∗Q \ Ṫ ∗

∂Q → Ṫ ∗

b Q . (2.1)

We equip Ṫ ∗

b Q with the topology induced by π . For any ξ ∈ T ∗M ,
denote by |ξ |g the norm of ξ with respect to the metric g . Let

Char(p) =
{
(t, x, τ , ξ ) : (t, x, τ , ξ ) ∈ Ṫ ∗Q , τ 2

− |ξ |
2
g = 0

}
and

Σb = π (Char(p)).

The cotangent bundle to the boundary is the disjoint union of
the elliptic set E , the hyperbolic setH and the glancing set G, which
are consisted by points ρ ∈ Ṫ ∗∂Q such that p has, respectively, no
zeros in π−1(ρ), two simple zeros in π−1(ρ) and double zeros in
π−1(ρ).

Let ρ0 ∈ G and β0 ∈ Char(p) such that π (β0) = ρ0. Let
γ : s → Ṫ ∗

b Q be the integral curve of

Hp
△
=

( ∂p
∂τ

∂

∂t
,

∂p
∂ξ 1

∂

∂x1
, . . . ,

∂p
∂ξ n

∂

∂xn
, −

∂p
∂t

∂

∂τ
,

−
∂p
∂x1

∂

∂ξ 1 , . . . , −
∂p
∂xn

∂

∂ξ n

)
such that γ (0) = β0. Then, γ is tangent to ∂Q at β0. Denote by
Gk(k ≥ 2) the set that the order of the contact of γ with ∂Q is
exactly k. Let Σ

2,−
b be the set such that β(s) ∈ Ṫ ∗Q for 0 < |s|≤ δ

with δ small enough, and Σ
2,+
b the set such that β(s) ̸∈ Ṫ ∗Q for

0 < |s|≤ δ, where δ > 0 is arbitrary positive number.
Now recall the definition of a ray associated with the symbol of

a wave operator.

Definition 2.1. Let p = τ 2
− |ξ |

2
g . A ray associated with p is a

continuous curve γ : I → Σb, where I ⊂ R is an open interval,
such that the following conditions hold.

1. If γ (s0) ∈ Σb∩Ṫ ∗Q , then γ is differentiable at s0 and γ ′(s0) =

Hp(γ (s0)).
2. If γ (s0) ∈

(
Σb ∩ Ṫ ∗Q

)
∪ Σ

2,−
b , then there is a δ > 0 such that

γ (s0) ∈ Σb ∩ Ṫ ∗Q for 0 < |s − s0|< δ.
3. If γ (s0) ∈ Σ

2,+
b , then there is a δ > 0 such that γ (s) ∈ Σ

2,+
b

for |s − s0|< δ. Further, γ is differentiable at s0 (as a curve in
Σ

2,+
b ) and γ ′(s0) = Hq(γ (s0)), where q(t, x; τ , ξ ) = |ξ |

2
b −τ 2,

where |ξ |b is the length of ξ ∈ T ∗Γ for the metric induced
by (M, g) on the boundary Γ .

4. If γ (s0) ∈ G3 and {γ̃ +(s), γ̃ −(s)} are the (at most) two points
in Char(p) such that π (γ̃ +(s)) = π (γ̃ −(s)) = γ (s) and
γ̃ +(s0) = γ̃ −(s0), then

lim
s→s0

γ̃ +(s) − γ̃ +(s0)
s − s0

= Hp(γ̃ +(s0)),

lim
s→s0

γ̃ −(s) − γ̃ −(s0)
s − s0

= Hp(γ̃ −(s0)).

We call the projection of a ray γ to Q an optics associated with
the symbol of the wave operator.

Let u be an extendible distribution on Q . Denote by WFs(u) the
wavefront set of u and WFsb(u) the wavefront set of u up to the
boundary.

We recall the definition for non-diffractive point.

Definition 2.2. A point ρ ∈ Ṫ ∗∂Q is called non-diffractive if
ρ ∈ E ∪ H, or if ρ ∈ G and if β ∈ Char(p) is the unique point
such that π (β) = ρ, the ray γ through β with γ (0) = β satisfies
that for any ε > 0, there exists an s ∈ (−ε, ε) such that γ (s) ̸∈ Ṫ ∗Q .
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