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a b s t r a c t

A nonlinear system with distributed delays describing cell dynamics in hematopoiesis is analyzed – in
the time-domain – via a construction of suitable Lyapunov–Krasovskii functionals (LKFs). Two interesting
biological situations lead us to re-investigate the stability properties of twomeaningful steady states: the
0-equilibrium for unhealthy hematopoiesis and the positive equilibrium for the healthy case. Biologically,
convergence to the 0-equilibrium means the extinction of all the generations of blood cells while the
positive equilibrium reflects the normal process where blood cells survive. Their analyses are slightly
different in the sense that we take advantage of positivity of the system to construct linear functionals to
analyze the 0-equilibrium, while we use some quadratic functionals to investigate the stability properties
of the positive equilibrium. For both equilibria, we establish the exponential stability of solutions and we
provide an estimate of their rates of convergence. Moreover, a robustness analysis is performedwhen the
model is subject to some nonvanishing perturbations. Numerical examples are provided.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

With the ultimate goal of determining a model describing cell
dynamics in acute myeloid leukemia, which will be of use for the
optimization of polychemotherapies, we start here with a model
describing the process of fabrication of blood which was studied
in [1] and revisited by input–output methods in [2]. Using an
alternative approach, our aim here is to deepen the analysis as well
as to solve some open issues which are of importance in practice.

Through the process of hematopoiesis, the Hematopoeitic Stem
Cells (HSCs) develop into red blood cells, white blood cells,
platelets and all other blood cells. HSCs are immature unspecial-
ized cells able to produce cells with the samematurity level and to
differentiate into specialized cells. This is a simplified development
scheme,which does not take into account other cell fates – increas-
ingly highlighted in recent years – such as cell dedifferentiation [3].
In fact, the complex cascade of signals regulating hematopoiesis is
not currently clearly identified. Therefore, the importance of this
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biological process hasmotivatedmany theoretical and experimen-
tal works that focus on the earliest generations of immature cells
since they play a critical role in blood formation, and because they
are the source of several hematological disorders. The long list
of works devoted to blood cells dynamics includes [1,4–6,2,7–9],
and [10].

Acute Myelogenous Leukemia (AML) is a serious type of
cancer, which is characterized by an overproduction of abnormal
myeloblasts, simultaneously with an inability to develop further
into mature white blood cells (a blockade in the maturation
process). Due to their overproliferation, blasts invade the bone
marrow and even – sometimes – the blood circulation (Fig. 1(a)),
which prevents adequate production ofmature healthy blood cells.
Since we want to emphasize on AML, we consider that the model
that we focus on describes the development hierarchy leading to
white cell production in the myeloid lineage.

Relying on several essential contributions by Mackey and his
colleagues ([8,9,6], to name but a few), Adimy et al. introduced and
analyzed in [1] a nonlinear systemwith distributed delays tomodel
cell dynamics in severalmaturity stages. This is themodelwe study
here, considering that it describes a cancer state when some of
its biological parameters are abnormal (i.e. being different from
healthy parameters, or becoming time-varying to model the effect
of appropriate infused drugs) and it reflects a healthy situation
when all its parameters are normal. Using a Lyapunov technique
we improve some existing results in two different contexts:
(i) we provide theoretical conditions to eradicate cancer cells in
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Fig. 1. (a) Blast cells are not typically found in the circulating blood of healthy individuals. The picture is from the National Cancer Institute. (b) Schematic representation
of the earliest stages in the myeloid lineage [1].

what we assume to be a basic unhealthy situation, and, (ii) we
ensure the survival of healthy cells in normal hematopoiesis. A key
point that we emphasize here is that the Lyapunov direct method
offers strong tools to study exponential convergence of solutions,
estimates on their decay rates (for both steady states), as well
as estimating the basin of attraction of the positive equilibrium
point and this, in our opinion, improves the way to study the
phenomenon of hematopoiesis (see the concluding remarks in [2]).
On the other hand, the search for a suitable Lyapunov functional
is generally quite difficult, since no systematic methods apply
[11,12], and that is the challenging problem that we are dealing
with in this contribution.

The paper is organized as follows. In Section 2 we briefly
present the model of interest. Section 3 is devoted to the study of
the 0-equilibrium of the system. We establish global exponential
stability even when some parameters are time-varying, then we
perform a robustness analysis. The strictly positive equilibrium X e

of the nominal system is discussed in Section 4. An estimate of
its basin of attraction is proposed via a construction of a novel
Lyapunov functional, that also allows us to perform a robustness
analysis of the perturbed system.

2. Description of the model and known results

We revisit from [1] the model described in Fig. 1(b), where for
all i ∈ In = {1, . . . , n} , n ≥ 1, xi denotes the total density
of resting cells of generation i. A resting cell is a cell that is not
actively in the process of dividing. The re-introduction function
from resting into proliferating subpopulation of the ith generation
is denotedβi(·). Proliferating cells can divide between themoment
they enter the proliferating phase and a maximal age τi > 0, while
the apoptosis rate,γi, represents the death rate of proliferating cells
of the ith generation. At each division, a proportion Ki of dividing
cells goes to the next resting stage of the development hierarchy
of interest, while the other part (Li = 1 − Ki) stays at the same
level i (self-renewing process), with the convention that K0 = 0.
The constant δi covers both the death rate of the resting cells of
the ith generation, together with their differentiation into lineages
that we do not focus on.

Finally, the dynamical system equation is in the form:

ẋi(t) = −δixi(t)− wi(xi(t))+ 2Li

 τi

0
gi(a)wi(xi(t − a))da

+ 2Ki−1

 τi−1

0
gi−1(a)wi−1(xi−1(t − a))da + ϵi(t), (1)

for each compartment i ∈ In, and t ≥ 0, with wi(xi) = βi(xi)xi,
gi(a) = e−γiafi(a), where the fis are C1 functions representing
the cell division probability densities, such that fi(a) ≥ 0 for all
a ∈ [0, τi], and

 τi
0 fi(a)da = 1, since it is assumed in [1] that the

mitosis occurs before the age-limit τi. Moreover, biological facts in-
duce that the parameters δi, Li, Ki, τi andγi are positive for all i ∈ In,
with K0 = 0 and Ki ∈ (0, 1) for all i ∈ In. The functions βi(·) are
assumed to be differentiable and decreasing functions such that
lima→+∞ βi(a) = 0. For a later use, we introduce the following
parameters:

Ci =

 τi

0
gi(l)dl, and, αi = 2LiCi − 1, (2)

where αi is assumed to be strictly positive, for all i ∈ In (see [2],
Assumption 2). We will perform a robustness analysis of (1) under
nonvanishing perturbation terms ϵi(t) ∈ [0, ϵ i], where ϵ i > 0, for
all i ∈ In and t ≥ 0. It is well-known that disturbances are in gen-
eral due to the lack of accuracy when modeling the laws govern-
ing complex living organisms.More precisely, in themodel thatwe
study, uncertainty comes from the biological parameters and func-
tions (e.g. the nonlinearity βi, introduced in [8]), and from more
complex phenomena which are difficult to model. In particular,
the ability of differentiated cells to undergo lineage reversion (in-
cluding dedifferentiation – themechanismwhereby differentiated
cells regress to a less mature state [3] – and transdifferentiation
from different types of cells and hierarchies) is not covered by the
model illustrated in Fig. 1(b). A basic representation of cells plastic-
ity features is achieved by considering dedifferentiation and trans-
differentiation as perturbation inputs. In fact, it can be proven that
nonvanishing perturbations arise from cell plasticity, and uncer-
tain re-introduction functionsβi, leading to system (1)with ϵi(t) ∈

(0, ϵ i], for all t ≥ 0.
Notation and definitions:
Throughout the paper, we analyze the stability of the model

described by (1), where for all i ∈ In = {1, . . . , n}, xi(t) ∈ Rn. The
state of the system (1) at a time instant t is defined as the restriction
of each component xi(t) of the solution x(t) = (x1(t), . . . , xn(t)),
on the segment [t − τi, t], for all i ∈ In. We let x = (x1, . . . , xn) and
Cin = C ([−τi, 0],R) denote the space of all continuous R-valued
functions defined on a given interval [−τi, 0], for all i ∈ In, and for
all t ≥ 0, the function xit is defined by xit(m) = xi(t + m) for all
m ∈ [−τi, 0].

Finally, we notice that negative steady states are excluded from
this study, as well as equilibria belonging to the boundaries of



Download English Version:

https://daneshyari.com/en/article/5010609

Download Persian Version:

https://daneshyari.com/article/5010609

Daneshyari.com

https://daneshyari.com/en/article/5010609
https://daneshyari.com/article/5010609
https://daneshyari.com

