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a b s t r a c t

This paper studies the global optimal consensus problem for amulti-agent systemwith bounded controls.
Each agent has its own objective function which is known only to itself. We focus on two multi-agent
systems, the single integratormulti-agent system and the double-integratormulti-agent system. For each
of these twomulti-agent systems, we construct, for each agent, a bounded local control protocol that uses
the information accessible to it through the communication topology underlying the multi-agent system
and information of its own objective function. It is shown that these control protocols together achieve
global optimal consensus for the multi-agent system, that is, all agents reaching consensus at a state
that minimizes the sum of the objective functions of all agents as long as the communication topology is
strongly connected and detailed balanced. Simulation results are given to illustrate the theoretical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Distributed cooperative control achieves several different con-
trol objectives such as consensus, swarming, flocking and for-
mation control. Among the many distributed cooperative control
problems, consensus has attracted much attention because of its
many applications such as mobile robots [1], autonomous under-
water vehicles [2], unmanned air vehicles (UAVs) [3], and dis-
tributed sensor networks [4]. Consensus of a multi-agent system
means that agents reach an agreement on their states by using the
information of their neighbors obtained through a communication
network. Many different consensus control protocols have been
constructed for multi-agent systems with various communication
topologies and under various real world constraints such as time-
delays and actuator saturation.

As an extension of consensus, the optimal consensus problem
for multi-agent systems, where the agents reach a consensus state
that optimizes the sum of the objective functions of all agents,
has been studied in recent years due to its applications in areas
such as wireless networks [5]. Traditionally, this problem is solved
in discrete-time setting [6–8]. With the development of cyber–
physical systems, much attention has been paid to the continuous-
time setting in order to design controllers which can be directly
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applied to practical systems such as robots and UVAs. In [9],
the convergence analysis in the optimal consensus problem was
considered for a fixed undirected graph. A nonlinear distributed
coordination rule was presented in [10] to achieve optimal con-
sensus under a switching directed communicating graph. The
continuous-time system was studied with discrete-time commu-
nication in [11]. The optimal consensus problem in the presence of
disturbances was studied in [12]. All these works focus on optimal
consensus for agents with single-integrator dynamics. However,
many practical systems possess double-integrator dynamics. It is
thus crucial to design optimal consensus protocols for double-
integrator systems. Recently, the optimal consensus problem for
agentsmodeledwith second-order integrator systemswas consid-
ered in [13,14]. In [15], the optimal consensus problem for high-
order multi-agent systems was considered.

Every actuator is subject to saturation due to its physical lim-
itations. When actuator saturation occurs, a multi-agent system
that was designed to achieve optimal consensus in the absence
of actuator saturation might fail to do so. However, no results are
available on the optimal consensus problem in the presence of
actuator saturation. In contrast, there have been several results on
global and semi-global consensus of multi-agent systems subject
to actuator saturation. Global consensus in the presence of actuator
saturation can be achieved when the agents are described by
the single-integrator [16,17] and double-integrator systems [18].
Global consensus in the presence of actuator saturation can be
achieved for general higher order but neutrally stable linear sys-
tems [18]. Semi-global consensus in the presence of actuator satu-
rationwas achieved in [19] for general higher order systemswhose
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open loop poles are all in the closed left-half plane by using the low
gain feedback design technique [20]. Semi-global output synchro-
nization for heterogeneous agents subject to actuator saturation
was considered in [21]. Recently, global consensus of general linear
systems using bounded controls was achieved in [22].

In this paper, we establish the possibility of achieving global
optimal consensus with bounded controls. Each agent in the group
is endowedwith anobjective function of its ownandknownonly to
itself. The dynamics of each agent is represented by that of single-
integrator or double-integrator, respectively. For each agent, we
will construct a bounded optimal consensus protocol that uses the
information of other agents obtained through the communication
network and information of its own objective function. We will
show that, under these control protocols, all agents reach a global
consensus state that optimizes the global objective function,which
is the sum of the objective functions of all agents, as long as the
communication topology is strongly connected and detailed bal-
anced. Themain difficulty of the global optimal consensus problem
over the global leader-following consensus problems [18,22] is
that the optimal state to reach consensus at is unknown and needs
to be determined by the optimal consensus algorithm.

The reminder of this paper is organized as follows. In Section 2,
we recall some basic definitions and notation in graph theory
and convex analysis. We then state the problem of global optimal
consensus in Section 3. The solutions to this problem for two
multi-agent systems, the single-integratormulti-agent system and
the double-integrator multi-agent system, over a fixed communi-
cation topology, are presented in Sections 4 and 5, respectively.
Simulation results are presented in Section 6. A brief conclusion
is drawn in Section 7.

Wewill use standardnotation. LetRm denote themdimensional
Euclidean space. For a vector a = [a1 a2 · · · am]

T
∈ Rm,

∥a∥ denotes the Euclidean norm of a defined by ∥a∥ =
√
aTa =√∑m

i=1|ai|
2 and∥a∥∞ denotes the infinity normdefined as∥a∥∞ =

maxi|ai|. For a matrix A ∈ Rm×m, ∥A∥∞ = maxi
∑m

j=1|aij|. Also,
1N = [1 1 · · · 1]T ∈ RN , Im denotes the m × m identity matrix,
and⊗ denotes the Kronecker product of matrices. For a symmetric
matrix A, by A > 0(≥ 0) we mean that A is positive definite
(positive semidefinite).

2. Preliminaries

Graphs are often used to represent the underlying commu-
nication topology among the agents in the study of multi-agent
systems. A directed graph GN consists of a finite, nonempty set
of nodes V = {ν1, ν2, . . . , νN}, each of them representing an
agent, and a set of ordered pairs of nodes E ∈ V × V , repre-
senting edges of the graph. An edge (νi, νj) in a directed graph
indicates that agent j has access of the information from agent i.
A directed path in a directed graph is a sequence of edges of the
form (νi1 , νi2 ), (νi2 , νi3 ), . . .. A directed graph is strongly connected
if there exists a directed path between any pair of distinct nodes.
Let A = [aij] ∈ RN×N be the adjacency matrix associated with
GN , where aij > 0 if (νj, νi) ∈ E and aij = 0 otherwise. Here we
assume that aii = 0 for all i = 1, 2, . . . ,N . Let L = [lij] ∈ RN×N be
the Laplacian matrix associated with A, where lii =

∑N
j=1aij and

lij = −aij when i ̸= j. A graph is said to be detailed balanced
if there exist some real numbers ωi > 0, i = 1, 2, . . . ,N , such
that the coupling weights of the graph satisfy ωiaij = ωjaji for all
i, j = 1, 2, . . . ,N [23].

The communication topology we consider in this paper is de-
scribed by a directed graph that satisfies the following assumption.

Assumption 1. The directed graph GN is strongly connected and
detailed balanced.

Define M = diag{ω}L = [mij] ∈ RN×N , where diag{ω} =

diag{ω1, ω2, . . . , ωN}, with ωi > 0, i = 1, 2, . . . ,N . By the defini-
tion of the detailed balanced graph,we have diag{ω}L = LTdiag{ω},
namely M = MT. Since L1N = 0, M1N = diag{ω}L1N = 0. Thus, M
is a valid symmetric Laplacian matrix, and we have the following
lemma.

Lemma 1 ([24]). Under Assumption 1, M is positive semidefinite and
all the eigenvalues of M are nonnegative and real. Moreover, 0 is a
single eigenvalue of M.

We next review some basic knowledge of convex analysis. A
function f : Rm

→ R is convex if, for any x, y ∈ Rm,

f (κx + (1 − κ)y) ≤ κ f (x) + (1 − κ)f (y), κ ∈ [0, 1]. (1)

A function is strictly convex if strict inequality holds in (1) when-
ever x ̸= y and 0 < κ < 1. Strict convexity of a function can be
verified by the following criteria:

(a) First order condition: Assume that f is differentiable. Then, f
is strictly convex if and only if (y − x)T(∇f (y) − ∇f (x)) > 0
for all x, y ∈ Rm, x ̸= y.

(b) Second order condition: Assume that f is twice differentiable,
i.e., ∇2f exists. If ∇2f (x) > 0 for all x ∈ Rm, then f is strictly
convex.

3. Problem statement

Consider a group of N agents, each described by an nth order
integrator system as,

x(n)i = ui, i = 1, 2, . . . ,N, (2)

where xi ∈ Rm is the states, x(n)i ∈ Rm represents the nth derivative
of xi, ui ∈ Rm is the bounded control input of agent i, ∥ui∥∞ ≤ umax
for some positive scalar umax.

Each agent has its own objective function fi(xi) : Rm
→ R to

minimize. We make the following assumption on these objective
functions of the agents.

Assumption 2. The objective functions fi : Rm
→ R, i =

1, 2, . . . ,N , are twice differentiable and ∇
2fi(x) > 0 for all x ∈ Rm.

The problem we are interested in is the global optimal con-
sensus problem. Consider the multi-agent system whose agents
are described by the dynamics (2). For each agent i, construct a
bounded optimal consensus protocol ui, ∥ui∥∞ ≤ umax, that uses
the information of other agents obtained through the communica-
tion network and information of its own objective function, under
which, the multi-agent system achieves consensus at a state x∗

which minimizes the objective function f (x) =
∑N

i=1fi(x), where
the convex function fi(x) : Rm

→ R is known only to agent i, that
is, x∗ is the solution to the following optimization problem,

min
x∈Rm

f (x),

with

(a) limt→∞xi(t) = x∗, i = 1, 2 · · · ,N .
(b) limt→∞x(s)i (t) = 0, s = 1, 2, . . . , n − 1, i = 1, 2 · · · ,N .

Since f (x) is strictly convex, the optimal consensus state x∗ is
reached if the following optimality condition is satisfied,

∇f (x∗) =

N∑
i=1

∇fi(x∗) = 0. (3)

In this paper, we will solve the global optimal consensus prob-
lem for multi-agent systems (2) with n = 1 and n = 2, which
are respectively the single integrator multi-agent system and the
double integrator multi-agent system.
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