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a b s t r a c t

This paper deals with the stabilization problem for a class of uncertain nonlinear systems on non-uniform
time domains. Some sufficient conditions are derived to design a state feedback controller for a class of
uncertain nonlinear time-varying systems under vanishing perturbations. Using someGronwall’s integral
inequalities, the uniform exponential stability of the closed-loop systems on arbitrary time scales, is
guaranteed. Then, based on the Lyapunov theory, new sufficient conditions are proposed to derive the
controller which ensures the practical stability of the closed-loop time-invariant nonlinear uncertain
system under non-vanishing perturbations. Some examples illustrate these results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The theory of dynamic equations on an arbitrary time scale
was introduced in [1]. This theory was found promising because
it unifies the theories of continuous-time and discrete-time
systems [2,3]. As expected, once a result has been established for
dynamic equations on an arbitrary time scale, this result holds for
standard continuous differential equations (i.e. R) and standard
difference equations (i.e. hZ, h is a real number). Besides these two
cases, there are many interesting time scales with non-uniform
step sizes (for instance,T = {tn}n∈N of so-called harmonic numbers
with tn =

n
k=1

1
k , the union of disjoint intervals with variable

length and fixed gap, the Cantor set).
This paper deals with the stabilization problem for a class of

nonlinear systems on arbitrary time scales. This research has po-
tential applications in such areas as dynamic programming [4],
neural network [5], economic modeling [6] and quantum calcu-
lus [7] to name a few. Another interesting example is distributed
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control over network. Indeed, the timedomainmay be neither con-
tinuous nor uniformly discrete due to possible intermittent infor-
mation transmissions for instance (for more details, one can refer
to [8]).

Qualitative properties of linear systems on time scales have
been studied in [9]. In [10–12], the properties of exponential
stability of linear systems on time scale were discussed. A
spectral characterization of exponential stability on time scale
was given in [10] using the usual exponential function. In [11],
sufficient conditions were derived to ensure uniform exponential
stability using the concept of time scale generalized exponential
function. In [12], uniform exponential stability for positive linear
time-invariant systems was studied using the stability radius.
Extensions to linear systems with structured perturbations and
quasilinear systems have been investigated in [13–15]. Recently,
the stability of switched linear systems has been studied using
a common quadratic Lyapunov function [16] or a spectral
characterization [17]. Stability of nonlinear systems on time
scales was studied in [18,19]. Using Lyapunov functions, some
conditions have been derived to guarantee the uniform and
uniform asymptotic stability [18] and exponential stability [19] for
dynamic equations on time scales.

Though there existmany results on dynamic equations evolving
on non-uniform time domains, control theory on time scales
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is not much developed. Mainly linear systems were studied
[20–22]. In [20], the controllability concept for linear systems was
generalized on an arbitrary time scale. A region of exponential
stabilization has been derived in [21] for time scale linear implicit
systems. In [22], the exponential stabilization of linear systems
was solved using some linear matrix inequalities. Realization
theory was presented in [23] for time-varying linear systems
and [24] for time-invariant linear systems. Nevertheless, there
are not many results dealing on nonlinear systems defined on
time scales. Realization theory for nonlinear systems has been
studied in [25]. Necessary and sufficient conditions for the local
static state feedback linearizability of nonlinear systems, defined
on an homogeneous time scale, were given in [26]. In [27], it
was shown that the uniform exponential stabilization of the linear
approximation of a nonlinear system implies uniform exponential
stabilization of the nonlinear system.Within, the local stabilization
problem for nonlinear systems with vanishing perturbations
was studied. Using an appropriate Lyapunov function, sufficient
conditions were derived in [28], to design a controller which
guarantees the uniform exponential stabilization of a class of
nonlinear systems. Nevertheless, the derived conditions cannot
be easily verified in practice. A linear state feedback controller,
based on matrix inequalities, was proposed in [29] for a class of
uncertain linear systems where the uncertainty satisfies a linear
growth condition. However, for nonhomogeneous time scales, the
controller gain cannot be easily computed.

The objective of this paper is to solve the stabilization problem
for a class of nonlinear systems,with bounded uncertainty, on arbi-
trary time scales. First, sufficient conditions are derived to design a
linear state feedback controller which guarantees the uniform ex-
ponential stability of the closed-loop system. The stability proof is
based on someGronwall inequalities and a Lipschitz kind condition
for the perturbation. Integral inequalities are a widely used pow-
erful tool for developing different stability properties for nonlinear
systems, as shown in [11,14,29–31]. Here, we want to extend such
results in order to study the uniform exponential stabilization of
the considered class of nonlinear systems. Then, using some inte-
gral inequalities, the exponential stabilization problem for a class
of nonlinear time-varying systems under integrable condition for
the perturbation is studied. These results are based on somemeth-
ods of estimation of general solution of the systems and imply that
the perturbation is vanishing. The last part of the paper is devoted
to the practical stabilization of a class of nonlinear time-invariant
systems with bounded non-vanishing perturbations, inspired by
the main result in [28]. In the latter, the problem of uniform expo-
nential stabilization is solved for the same class of systems under
bounded vanishing disturbances. Sufficient conditions are derived
to design an appropriate linear state feedback controller using the
Lyapunov theory. Through the paper, some simulations illustrate
the proposed results.

2. Preliminaries on time scale theory

Let us first recall some basics on the theory of time scales.
Generalities with applications and advances in dynamic equations
on time scales are given in [2,3]. A time scale T is any closed
subset ofRwith order and topological structure in a canonicalway.
Throughout this paper, the following notations will be used. Let
a ∈ T. We define the set T+

a := {t ∈ T : t ≥ a}. Since a time scale
may or not be connected, the concept of jump operator is useful to
define the generalized Hilger derivative f ∆ of a function f defined
on an arbitrary time scale T.

Definition 1. For t ∈ T, we define

• the forward jump operator σ : T → T by σ(t) := inf{s ∈ T :

s > t},

• the backward jump operator ρ : T → T by ρ(t) := sup{s ∈ T :

s < t},
• the graininess function µ : T → R+ by µ(t) := σ(t)− t .

The jump operators σ and ρ allow the classification of points in T
in the following way.

Definition 2. An element t ∈ T is said to be right-dense if σ(t) =

t , right-scattered if σ(t) > t , left-dense ifρ(t) = t , left-scattered if
ρ(t) < t , dense if t = σ(t) = ρ(t) and isolated ifσ(t) > t > ρ(t).

If T has a left-scattered maximum, this element is called a
degenerate point. Denote byTκ the set of all non degenerate points
ofT. Note thatwhen sup(T) = +∞, thenTκ = T. Given a function
f : T → R, we define the so-called Hilger derivative of f at a point
t ∈ Tκ as follows.

Definition 3. Assume that f is a function and let t ∈ Tκ . Then, we
define the Hilger derivative f ∆(t) at t to be the number (provided
it exists) with the property that given any ε > 0, there is a
neighborhood U of t such that

|[f (σ (t))− f (s)] − f ∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U .

Alternatively, one can define

f ∆(t) := lim
s→t,s≠σ(t)

f (σ (t))− f (s)
σ (t)− s

.

Clearly, the generalized derivative on time scales becomes the
usual derivative when T = R, i.e. f ∆(t) = ḟ (t). Furthermore,
if T = Z, then f ∆(t) reduces to the usual forward difference
operator f ∆(t) = ∆f (t). Hence, the time scale theory unifies both
differential and difference equation theories.

Definition 4. A function F : T → R is called antiderivative of
f : T → R provided F∆(t) = f (t) holds for all t ∈ Tκ .

We then introduce the Cauchy integral or the definite integral
by s

r
f (τ )∆τ = F(s)− F(r) for all r, s ∈ T.

Definition 5. If a ∈ T, sup(T) = +∞ and f is rd-continuous on
T+
a , then we define the improper integral by
+∞

a
f (t)∆t = lim

b→+∞

 b

a
f (t)∆t

provided this limit exists, and we say that the improper integral
converges in this case. Otherwise, we say that the improper
integral diverges.

Formore details about the delta integral, one can refer to [3, Section
1.4]. We note that the delta integral is studied in terms of Riemann
and Lebesgue type integral, as shown in [2, Chapter 5].

Definition 6. • A function f : T → R is called rd-continuous
(denote f ∈ Crd := Crd(T,R)), if
⋆ f is continuous at every right-dense point on T,
⋆ lims→t− f (s) exists and it is finite at every left-dense point

t ∈ T.
• A function matrix A : T → Rn∗n is rd-continuous on T, if each

entry of A is rd-continuous on T.
• A function f : T × Rn

→ Rn is said to be rd-continuous, if h
defined by h(t) = f (t, x(t)) is rd-continuous for any continuous
function x : T → Rn.

• An rd-continuous function f : T → R is said to be regressive
(i.e. f ∈ R(T,R)) if 1 + µ(t)f (t) ≠ 0 for all t ∈ Tκ . In the
following the set R(T,R) is denoted R.
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