
Systems & Control Letters 98 (2016) 8–13

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

On accessibility conditions for state space nonlinear control systems
on homogeneous time scales
Z. Bartosiewicz a, Ü. Kotta b, T. Mullari b, M. Tõnso b, M. Wyrwasa,*
a Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
b Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Estonia

a r t i c l e i n f o

Article history:
Received 3 February 2016
Received in revised form 13 September
2016
Accepted 22 September 2016

Keywords:
Nonlinear system
Time scale
Vector field
One-form
Nabla and delta operators
Accessibility

a b s t r a c t

An algebraic formalism for nonlinear control systems defined on homogeneous time scales is introduced.
This formalism is based on the forward, backward shifts, delta and nabla operators of differential one-
forms and vector fields. The accessibility conditions for considered control systems both in terms of vector
fields and one-forms are presented.
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1. Introduction

The fairly new area of time scale analysis combines the tra-
ditional areas of continuous- and discrete-time analysis into a
single theory. The study of control systems on time scales brings
together the study of traditional continuous- and discrete-time
(or uniformly sampled) systems. This theory can also incorporate
much less studied non-uniformly sampled systems by assuming
non-homogeneous but regular time scale. The area has potential
applications in engineering, ecology,medicine, economics, etc. The
goal of this paper is to study accessibility property for nonlinear
systems, defined on homogeneous time-scale. Note that accessi-
bility, a special notion of controllability, is a fundamental system
property that can be algebraically characterized using the con-
cept of autonomous variable [1]. This property is closely related
to reachability property: a continuous-time system is said to be
accessible if its reachable set from almost all initial points has a
non-empty interior [2].

Note that in [3] necessary and sufficient accessibility conditions
were given for the set of nonlinear higher order input–output
delta-differential equations, defined on a homogeneous time scale.
In [3] the polynomial approach has been used to develop the
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accessibility condition that mimics the one from the linear theory,
formulated in terms of the greatest common left divisor of two
polynomial matrices. This paper focuses on systems, described by
the state equations and presents two equivalent conditions. One
of them is given in terms of differential one-forms and the other
is related to the dimension of the distribution that annihilates the
vector space of differential one-forms. In the continuous-time case
theywill lead to the vector space of one-formswith infinite relative
degrees and strong accessibility distribution, respectively, see for
instance [4]. The first condition is, in most cases, easier to apply.
It allows to check generic accessibility property and also to find
the autonomous variables of the system but is of no help in finding
the singular points from which the system is not reachable. This
is the main motivation for developing the second condition that
has the advantage to determine the singular points from which
the system is not reachable. Of course, this condition also allows
to check generic accessibility and to find autonomous variables
but is computationally more demanding. In the development of
the second condition we use the recent definition of the nabla
derivative of the vector field [5]. The algebraic approach used here
assumes infinite dimensional spaces of vector fields, and as such
has analogy with the Lie–Bäcklund approach in the continuous-
time case [6].

Like in [3], our accessibility definition is based on the con-
cept of autonomous variable, introduced by Pommaret (see for
instance [1]) and found much use in nonlinear control literature
[4,7–9]. The benefit (usefulness) of this concept depends on the
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fact that the definition is not related to specific system description
nor specific subclasses of systems but is universally applicable in
various situations.

The paper is organized as follows. Section 2 recalls the notion
of time scale and its main concepts delta- and nabla-derivatives,
provides the definition of homogeneous time scale and some no-
tations used later on in the subsequent sections. Additionally, Sec-
tion 2.2 presents the differential fields ofmeromorphic functions of
system variables, associated with the considered control systems.
Moreover, this section introduces the vector space of differential
one-forms and the operators defined on this space are given. In
Section 3 the properties of the subspaces of the vector space of
differential one-forms and distributions of the dual vector space
are presented. We show that the considered subspaces can be
treated as codistributions on some sets. Moreover, the relation
between the presented codistributions and distributions is given
in Proposition 7 and Corollary 8. The main result, that is the neces-
sary and sufficient accessibility conditions for a nonlinear control
system, defined on a homogeneous time scale, are formulated and
proved in Section 4. Finally, the example that illustrates our results
is given.

2. Preliminaries

For the introduction to the calculus on time scales, see [10,11].
Here, we recall only those notions and facts that will be used later.

2.1. Time scale calculus

A time scale T is an arbitrary nonempty closed subset of the
set R of real numbers. For t ∈ T the forward and backward jump
operators σ , ρ : T → T are defined by σ (t) = inf {s ∈ T| s > t} ,
and ρ(t) = sup {s ∈ T| s < t}, respectively. In addition, we set
σ (maxT) = maxT if there exists a finite maxT, and ρ(minT) =

minT if there exists a finite minT. Then the graininess functions
µ, ν : T → [0, ∞) are defined by µ(t) = σ (t) − t and ν(t) = t −

ρ(t), respectively. for all t ∈ T. A time scale is called homogeneous
if µ and ν are constant functions.

From now, we assume that T is a homogeneous time scale. The
definitions and the properties of the delta and nabla derivatives f ∆

and f ∇ of a real function f can be found, for instance, in [10,11] and
they are also recalled in [5,12].

Remark 1. The delta and nabla derivatives are a natural extension
of time derivative in the continuous-time case and respectively,
forward and backward difference operators in the discrete-time
case. Therefore, for T = R, f ∆(t) = f ∇ (t) = lims→t

f (t)−f (s)
t−s = f ′(t)

and for T = Z, f ∆(t) =
f (σ (t))−f (t)

µ(t) = f (t + 1) − f (t) =: △f (t),
where △ is the usual forward difference operator, and f ∇ (t) =
f (t)−f (ρ(t))

µ(t) = f (t)−f (t−1) =: ∇f (t), where∇ is the usual backward
difference operator.

Let f [0]
:= f and f [1]

= f ∆. For a function f : T → R we define
higher order delta derivatives by f [2]

: T → R, f [2]
:=
(
f ∆
)∆ and

f [n]
: T → R, f [n]

:=
(
f [n−1]

)∆. n ⩾ 3. Note that for a homogeneous
time scale f [n], n ⩾ 1 are uniquely defined for all t ∈ T .

2.2. Differential fields

Now, we recall some definitions and facts given in [13,14] that
will be used in the paper. The facts concerning the concepts of the
σf -differential field can be found in [14] and of the ρf -differential
field in [5]. Since T is homogeneous, the graininess functions are
constant, i.e. ν = µ = const. Consider now the control system,
defined on the homogeneous time scale T,

x∆(t) = f (x(t), u(t)), (1)

where (x(t), u(t)) ∈ X×U , X×U is an open subset of Rn
×Rm,

m ≤ n, x is a state, u is a control (input) of the system, and function
f : X×U → Rn is analytic. Let us define f̃ (x, u) := x + µf (x, u).

Assumption 1. Assume that there exists a map ϕ : X×U → Rm

such that Φ = (̃f , ϕ)T is an analytic diffeomorphism1 from the set
X×U onto X×U .

Assumption 1 means that from (x̄, z) =
(̃
f (x, u), ϕ(x, u)

)
=

Φ(x, u) we can uniquely compute (x, u) as an analytic function of
(x̄, z). Forµ = 0 this condition is always satisfied with ϕ(x, u) = u.
In the case µ > 0 the system (1) can be rewritten in the following
equivalent form

xσ (t) = f̃ (x(t), u(t)). (2)

Then z = ϕ(x, u) ∈ Rm such that rank ∂(f̃ ,ϕ)
∂(x,u) = n + m.

For notational convenience, (x1, . . . , xn) will simply be written
as x, and for k ≥ 0

(
u[k]
1 , . . . , u[k]

m

)
will be written as u[k]. For

i ≤ k, let u[i..k]
:=

(
u[i], . . . , u[k]

)
. We assume that the control

(input) applied to system (1) is infinitely many times delta differ-
entiable, i.e. u[0..k] exists for all k ≥ 0. Consider the infinite set
of real (independent) variables C = {xi, i = 1, . . . , n, u[k]

j , j =

1, . . . ,m, k ≥ 0}. LetK be the (commutative) field ofmeromorphic
functions in a finite number of the variables from the set C. Let
σf : K → K be an operator defined by σf (F )

(
x, u[0..k+1]

)
:=

F
(
x + µf (x, u), u[0..k]

+ µu[1..k+1]
)
, where F ∈ K depends on x and

u[0..k]. We assume that (x, u) ∈ X×U and the other variables are re-
stricted in such a way that σf is well defined. Under Assumption 1,
σf is injective endomorphism.

Additionally, the fieldK can be equippedwith a delta derivative
operator ∆f : K → K defined by

∆f (F)
(
x, u[0..k+1])

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
µ

[
F
(
x + µf (x, u), u[0..k]

+ µu[1..k+1])
− F

(
x, u[0..k])] ,

if µ ̸= 0,
∂F
∂x

(
x, u[0..k]) f (x, u) +

∑
k≥0

∂F
∂u[0..k]

(
x, u[0..k]) u[1..k+1],

if µ = 0,

(3)

where F ∈ K depends on x and u[0..k].
The more compact notations Fσf and F∆f will be sometimes

used instead of σf (F) and∆f (F). Under Assumption 1,K endowed
with the delta derivative ∆f is a σf -differential field. For µ = 0,
σf = σ−1

f = id and K is inversive. It is always possible to embed
K into an inversive σf -differential overfieldK∗, called the inversive
closure of K [15] and extend σf to K∗ so that σf : K∗

→ K∗ is
an automorphism. Let ρf : K∗

→ K∗ be an operator defined by
ρf := σ−1

f . For µ ̸= 0, K∗ is the field of meromorphic functions
in variables C∗

= C ∪ {z⟨−ℓ⟩
s , s = 1, . . . ,m, ℓ ≥ 1} [13], where

z⟨−ℓ⟩

i = σf

(
z⟨−ℓ−1⟩
i

)
and zi = ϕi(x, u) = σf

(
z⟨−1⟩
i

)
.

Let z := (z1, . . . , zm). Then
(
ρf (x), ρf (u)

)
= Ψ

(
x, z⟨−1⟩

)
, where

Ψ is a certain vector valued function, determined by Φ(x, u). The
extension of operator ∆f to K∗ can be made in analogy to (3).
Such operator ∆f is now a σf -derivation of K∗ since it satisfies the
following generalized Leibniz rule ∆f (FG) = ∆f (F )G+ σf (F )∆f (G).
Additionally, the field K∗ can be equipped with a nabla derivative
operator ∇f : K∗

→ K∗ defined by

∇f (F) :=

{ 1
µ

[
F − ρf (F )

]
, if µ ̸= 0

∆f (F ), if µ = 0.
(4)

1 This assumption guarantees that the system xσ
= f̃ (x, u) is submersive, that is

generically rank ∂ f̃ (x,u)
∂(x,u) = n.
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