
Systems & Control Letters 99 (2017) 47–56

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

A receding horizon stabilization approach to constrained
nonholonomic systems in power form
Huiping Li a,*, Weisheng Yan a, Yang Shib
a School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, 710072, China
b Department of Mechanical Engineering, University of Victoria, Victoria, B.C., Canada, V8W 3P6

a r t i c l e i n f o

Article history:
Received 13 July 2016
Received in revised form 28 September
2016
Accepted 19 November 2016
Available online 21 December 2016

Keywords:
Receding horizon control (RHC)
Nonholonomic systems
Input constraints
Stabilization
Nonlinear systems
ρ-exponential stability

a b s t r a c t

The control of nonholonomic systems with practical requirements is still a challenging problem but finds
many industrial applications. This paper studies the receding horizon control (RHC)-based stabilization
problem of a class of constrained nonholonomic systems in power form. A non-quadratic cost function
is constructed by using the homogeneous norm of the nonholonomic system in power form. With this
novel cost function, two kinds of RHC algorithms are designed, of which one ensures the convergence
of the closed-loop system states, and the other ensures the ρ-exponential stability. The feasibility of
the designed algorithms and the closed-loop convergence are analyzed and ensured theoretically under
mild conditions. The comparison and application results are provided, showing that (1) the proposed
RHC algorithms are effective and the theoretical results are valid, and (2) the proposed algorithms can
stabilize the nonholonomic systems with a much faster convergence rate than the conventional time-
varying stabilizable controllers.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to the fact that most of the mechanical systems (such as
automobile, robots, unmanned aerial vehicles (UAVs) and under-
actuated autonomous underwater vehicles (AUVs)) involve non-
holonomic constraints, the control of nonholonomic systems is of
particular industrial interest, and has been an active topic in last
three decades [1–4]. The challenge of controlling nonholonomic
systems is caused by the nonholonomic constraints, resulting in
that the linearized system at the origin losses controllability and
there does not exist a locally static continuous state feedback
controller to stabilize such nonlinear systems; see the Brockett’s
theorem in [5]. Many results have been proposed to solve the
stabilization and tracking problems of nonholonomic systems, in-
cluding the discontinuous feedback techniques [6–8], the time-
varying feedback controllers [9–11] and recently, the switched and
hybrid control strategies [1,3].

In practice, the control inputs of a mechanical system are likely
to be constrained due to actuator saturations, and the control
performance is expected to be optimized. Several results have been
reported for the stabilization problem of nonholonomic systems
addressing these practical issues. For example, in [12,13], the sta-
bilization of nonholonomic systems in chained form are addressed
by considering practical control input bounds. To obtain optimal
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control performance, Qu et al. investigate the stabilization problem
of nonholonomic systems in chained form based on LQR and a
near-optimal control performance is achieved in [14]. However,
none of the aforementioned results consider the control input
constraints and optimal performance simultaneously.

It is well-known that the receding horizon control (RHC),
also known as model predictive control enjoys wide popularity
due to its capability of handling system constraints, achieving
(sub)-optimal control performance, and dealing with nonlinear
dynamics; see [15–20] for example. In addition, the RHC provides
piece-wise control law which may offer a feasible solution to
the stabilization problem of nonholonomic systems. Motivated by
these facts, in this study, we investigate the RHC-based strategy
for the stabilization problem of a class of nonholonomic systems
in power form with control input constraints. Note that most
of the nonholonomic systems can be transformed into power
forms through appropriate coordinate transformation [21], and
that the nonholonomic systems in power forms are equivalent to
the chained forms [22].

It is worth noting that the design and analysis of RHC strategy
for nonholonomic systems are non-trivial. Due to the fact that
there does not exist a stabilizable state feedback controller for
the linearized system of the nonholonomic systems at the origin,
the assumption that there exists a locally linear state feedback
law in the conventional RHC [16,17,23,24] does not hold, and thus
these RHC strategies cannot be applied. In [25], a general frame
for RHC design is proposed for nonlinear systems, however, it
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is generally very hard and unclear how to construct a terminal
region with a stabilizable controller as in Condition S5); see also
the last example given in [25]. In [26], the RHC strategy is devel-
oped for the stabilization problem of a wheeled vehicle by using
quadratic cost functions, but the feasibility is not analyzed and
theoretically guaranteed. Except these results, most of the RHC
strategies for nonholonomic vehicles (e.g., [27–30]) are application
results without rigorous analysis and performance guarantee. As a
result, it is very necessary to develop a general RHC framework for
constrained nonholonomic systems with theoretically guaranteed
performance.

In this paper, we propose a general approach to designing the
RHC algorithms for a class of constrained nonholonomic systems
in power form, and provide theoretical analysis for the parameter
design with guaranteed feasibility and closed-loop convergence.
The RHC algorithm design makes use of the homogeneity of the
nonholonomic systems and the time-varying controller in [31]. The
main contributions of this paper are three-fold:

• A general RHC-based approach to the stabilization of con-
strained nonholonomic systems in power forms is proposed.
A novel cost function is first constructed, and this cost func-
tion is not in conventional quadratic form, but a function of
the homogeneous norm of the nonholonomic systems with
fixed structure. Built on the cost function, two novel RHC
algorithms, with one ensuring state convergence and the
other ensuring ρ-exponential stability are designed.

• The theoretical results on guaranteeing control perfor-
mance under the proposed RHC approach are provided. It
is shown that under the way of designing the terminal
set, the designed RHC algorithms are iteratively feasible.
In addition, we show that, under the same conditions, the
closed-loop systems are guaranteed to be convergent and
ρ-exponentially stabilized, respectively, by using the two
RHC algorithms. These theoretical results provide a general
approach to parameter design, leading to feasible and stable
RHC algorithms in practical implementation.

• The comparison study and application of the designed RHC
algorithm are provided. Comparison results show that the
designed RHC algorithms ensure constraint fulfillment, and
stabilize the closed-loop system with a much faster conver-
gence rate than the conventional time-varying exponential
stabilization strategy in [31]. The application procedure of
the proposed RHC for stabilization of a constrained nonholo-
nomic car is presented, including a coordinate transforma-
tion and application of the proposed RHC. The application
example verifies the potential applicability of the proposed
approach.

The remainder of this paper is structured as follows. The prob-
lem formulation and preliminaries on homogeneous systems are
presented in Section 2. The RHC algorithm ensuring state conver-
gence is designed in Section 3, and the feasibility and closed-loop
convergence analysis is presented Section 4. The results on the RHC
algorithm with ρ-exponential stability are provided in Section 5.
In Section 6, a simulation and comparison study is conducted,
and in Section 7, the application result to a nonholonomic car is
presented. Finally, the conclusion is summarized in Section 8.

The notations used in this paper are as follows. The superscript
‘‘T’’ denotes the matrix transposition. We use the symbol R to
denote the real number, and Rn to denote an n-dimensional real
space. Given a column vector x ∈ Rn, denote its Euclidean norm as
|x|. Given two sets U ∈ Rn andW ∈ Rn with U ⊆ W , byW \ U , we
mean that the set {x|x ∈ W, x ̸∈ U}. The symbol col{x1, x2, . . . , xn}
denotes the column operation as [xT1, x

T
2, . . . , x

T
n]

T for column vec-
tors x1, x2, . . . , xn.

2. Problem formulation and preliminaries

2.1. Problem formulation

Consider the following nonholonomic systems described in
power form:

ẋ1(t) = u1

ẋ2(t) = u2

ẋi(t) =
xi−2
2

(i − 2)!
u2, i = 3, . . . , n, (1)

where xi are the system states, and uj, j = 1, 2 are the control
inputs. The control inputs are required to satisfy the constraints
as

uj ∈ Uj, j = 1, 2, (2)

where Uj ⊆ R and contain zero as their interior point. The system
in (1) can also be written as

ẋ = f (x, u),

where x = col(x1, . . . , xn), and u = col(u1, u2). The objective of
this study is to design a RHC algorithm such that the closed-loop
system in (1) is stablewith respect to the equilibriumpoint and the
constraints in (2) fulfill.

Note that even without the control input constraints, there
does not exist a state feedback control law locally stabilizing the
system in (1), due to the fact that the linearized system at zero is
not controllable. This is a direct result caused by nonholonomic
property of the system in (1); see [5] for detailed reason. As a
result, the assumption on the existence of a linear state feedback
controller in [16,17,23,24,32] is not satisfied, and these popular
RHC algorithms are not applicable for the system in (1).

In this study,wewillmakeuse of thehomogeneity of the system
in (1) to design the RHC strategies.

2.2. Preliminaries

In order to make use of the homogeneity of the system in (1),
a few definitions on dilation, homogeneous function, norm and
vector field are recalled and presented [31,33].

Definition 1 (Dilation and Homogeneous Norm). For x ∈ Rn, a
dilation operation onRn is defined by the followingmap δrλ : Rn

↦→

Rn:

δrλ = (λr1x1, λr2x2, . . . , λrnxn), λ > 0,

where r = (r1, . . . , rn) with ri ⩾ 1. A homogeneous norm
associated with the dilation δrλ is defined as

ρp(x) =

(
n∑

i=1

|xi|p/ri
)1/p

, p > 0.

Definition 2 (Homogeneous Function and Vector Field). A continu-
ous function f : Rn

× R ↦→ R is said to be homogeneous of degree
l ⩾ 0 with respect to the dilation δrλ, if

f (δrλx, t) = λlf (x, t), ∀λ > 0.

In addition, a continuous vector field g : Rn
× R ↦→ Rn

× R is said
to be homogeneous of degree l ⩾ 0 with respect to the dilation δrλ,
if

gi(δrλx, t) = λl+rigi(x, t), ∀i = 1, . . . , n.
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