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a b s t r a c t

The paper presents a novel approach for the analysis and control of a multi-agent system with non-
identical agents and a path-graph topology. With the help of irrational wave transfer functions, the
approach describes the interaction among the agents from the ‘local’ perspective and identifies travelling
waves in the system. It is shown that different dynamics of the agents create a virtual boundary that causes
a partial reflection of the travelling waves. Undesired effects due to the reflection of the waves, such
as amplification/attenuation, long transients or string instability, can be compensated by the feedback
controllers introduced in this paper. We show that the controllers achieve asymptotic and even string
stability of the system.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A path graph is one of the simplest andmost studied interaction
topologies of a multi-agent system. This topology is used in many
applications, such as vehicle platoons [1,2], discretized flexible
structures [3,4], or spatially-discretized models of long electrical
transmission lines [5]. Formally, a path graph is a graph with N
vertices, ordered as v1, v2, . . . , vN , with edges between vertices
{vi, vi+1}, i = 1, . . . ,N−1. Equivalently, in a path graph topology,
each agent, except for the first and last one, interacts with its two
neighbours (see Fig. 1).

There are many tools for describing multi-agent systems. They
range from state-space techniques [6], polynomial approaches [7]
to statistical-physics-based description [8]. In path graphs, scaling
of H2 and H∞ norms was calculated in [1] and [9]. Boundedness
of the norm of interest for any N can be captured by a term
‘‘string stability’’. Roughly speaking, in a string-stable system a
disturbance is not amplified as it propagates among the agents (see
[10] for various definitions). The approaches mentioned so far are
very useful in analysing aggregate properties of the multi-agent
system, such as its stability or system norms. On the other hand,
it is more difficult to infer from them what happens in the middle
of the system or near the boundaries.
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Following the ideas of other researchers (e.g., [11,12]), we will
describe the systemusing awave perspective. Indeed, the propaga-
tion of the change in themulti-agent system can be describedwith
the help of travellingwaves.Wewill illustrate it on an example of a
systemwith identical agents and a path-graph topology. If the first
agent changes its output, then all following agents sequentially
respond to this change. If we study their response from the local
point of view [13–15] we can notice that the change is propagated
as a wave. The wave departs from the first agent and travels
along the system to the last agent, where it reflects and travels
back. When it reaches the first agent, it reflects again. A similar
phenomenon is apparent when the agents are non-identical—the
travelling wave is partially reflected on non-identical agents [16].
We can imagine this behaviour as the reflection of the wave if it
encounters a boundary between twomedia of different properties.

The tool for analysis in this paper will be so called wave trans-
fer function (WTF). The transfer-function approach to waves has
recently been revisited in a series of papers for lumped models
[13,17] and for continuous flexible structures [15]. The travelling
wave approach has also been applied to vibration control [18] and
it seems to be related to the impedancematching in the power net-
works [19]. The wave-based description leads to irrational transfer
functions, analysis of which differs in several aspects from their
rational counterparts [20].

This paper continues in the research started in [14], where
waves in a platoon of identical vehicles were considered. A natural
extension of thismodel is to consider a chain of non-identical (het-
erogeneous) agents. The first step in the treatment of non-identical
agents using travelling waves is given in [21] for a mass–spring
model. We generalize it by considering arbitrary dynamics of the
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Fig. 1. Structure of the path graph. The arrows show interaction between agents.
The agent L is a virtual leader of the multi-agent system, which commands only the
first agent.

agents and their controllers. The preliminary results are presented
in [16], where we introduced the soft boundary in a chain of vehi-
cles. Here, we introduce the second fundamental type of boundary,
the hard boundary. Although the boundaries are virtual in nature,
they principally affect the overall system behaviour. We present
some fundamental properties of the boundaries and design wave-
absorbing controllers for both types of boundaries.

The main contributions of the paper are: (i) mathematical de-
scription of the travelling waves in a multi-agent system with
non-identical agents given by Theorems 1 and 2, (ii) a design of
a controller that prevents a reflection of the travelling wave (The-
orems 3 and 4) and (iii) proof of stability and string stability when
these controllers are used (Theorem 5). For better understanding
and easy simulations, we provide a set of functions inMATLAB, see
WaveBox [22].

2. Systemmodel

In thewhole paperwework onlywith LTI systems in the Laplace
domain, all transfer functions are SISO and signals are assumed to
be scalars. The argument (s) denotes the Laplace variable and can
be omitted when no ambiguity seems possible.

We consider a multi-agent system of N non-identical agents
with a path-graph interaction topology. Each agent interacts with
its nearest neighbours using output feedback. The LTI dynamics of
the agent i consists of two parts: the model of the plant Pi(s) and
the models of the controllers. The controller CL

i (s) processes the
output error Xi−1(s) − Xi(s) to agent’s predecessor i − 1 and the
controller CR

i (s) processes the output error Xi+1(s)−Xi(s) to agent’s
follower i+ 1. Based on the order of agents in Fig. 1, we denote the
interaction of the agent iwith agent the i−1 by superscript ‘L’ (left
of agent i) and the interaction with agent i + 1 by superscript ‘R’
(right of agent i). The input Ui(s) of the plant is generated by the
controllers as

Ui(s) = CL
i (s)

(
Xi−1(s) − Xi(s) + W L

i (s)
)

+ CR
i (s)

(
Xi+1(s) − Xi(s) + W R

i (s)
)
,

(1)

where W L
i (s) and W R

i (s) are external inputs to the agent, which
will be defined later on. The output of the agent is then given by
Xi(s) = Pi(s)Ui(s). By defining the left open-loop transfer function
(OLTF) ML

i (s) = Pi(s)CL
i (s) and right OLTF MR

i (s) = Pi(s)CR
i (s), we

obtain the overall model of the agent

Xi(s) = ML
i (s)

(
Xi−1(s) − Xi(s)

)
+ MR

i (s)
(
Xi+1(s) − Xi(s)

)
+ML

i (s)W
L
i (s) + MR

i (s)W
R
i (s).

(2)

The structure of the ith agent is depicted in Fig. 2. Usually, there is at
least one integrator both in the left and right OLTFs (for instance,
from velocity to position), such that the OLTF can be factored as
M(s) = 1/sνM(s), where M(0) < ∞ and ν is the number of
integrators in the corresponding open loop (eitherML

i orMR
i ).

Often, the system has a reference Xref which it should track. This
reference is given by a (virtual) leader, which is usually connected
to one of the end nodes. Without loss of generality, we assume
that it is connected to the first agent, which is then described as
X1(s) = ML

1(s)(Xref(s)−X1(s)+W L
1 (s))+MR

1 (s)(X2(s)−X1(s)+W R
1 (s)),

The last agent i = N has only one neighbour, so its model is
XN (s) = ML

N (s)
(
XN−1(s) − XN (s) + W L

N (s)
)
.

Fig. 2. The model of ith agent.

2.1. Wave transfer function

The key idea of the wave approach is that the output of the ith
agent is decomposed into two components, Ai(s) and Bi(s) such that
Xi(s) = Ai(s)+ Bi(s). The component Ai(s) represents a wave which
propagates from left to right, that is, to the agents with higher
indices. The component Bi(s) represents the wave propagating
from right to left—to the agents with lower indices. The idea is
similar to the standard D’Alambert solution of the wave equation
in PDE, where also two waves propagating in different directions
appear [23].

Now we summarize the results of [14], where we considered
identical agents. In this case ML

i (s) = MR
i (s) = M(s). The Wave

transfer function G(s) captures how the wave propagates in the
system in one direction, that is Ai+1(s) = G(s)Ai(s) and Bi−1(s) =

G(s)Bi(s). There is a simpleway how to derive this transfer function.
Consider a path graph with infinite number of agents and with
only a wave propagating in the direction of increasing index. Since
there is no end in this system, the wave will never reflect back, so
Xi(s) = Ai(s). ThenWTF is given byG(s) = Xi+1(s)/Xi(s) forN → ∞,
see [14, Sec. 3.1]. When W L

i = W R
i = 0, the system with identical

agents is described for i ∈ [1,N − 1] as

Xi(s) = Ai(s) + Bi(s), (3)
Ai+1(s) = G(s)Ai(s), (4)

Bi(s) = G(s)Bi+1(s), (5)

G(s) =
1
2
α(s) −

1
2

√
α2(s) − 4, (6)

whereα(s) = 2+1/M(s), or, alternatively,α(s) = G(s)+G−1(s). The
function G−1(s) = 1/G(s) =

1
2α(s)+

1
2

√
α2(s)−4. We now explain

the travelling wave concept. Combining (3)–(5),

Xi(s) = G(s)Ai−1(s) + G(s)Bi+1(s). (7)

This means that the wave Ai−1(s) coming from the left (from the
agent with lower index) is transformed through the transfer func-
tion G(s) and summed with the transformed wave G(s)Bi+1(s) from
the right (from the agent with higher index).

Now suppose that the number of agents is finite. Then, as we
discussed in [14], there are two types boundaries in the homo-
geneous system, located at the end nodes in the path graph. The
forced-end boundary is caused by the leader’s output Xref. If the
leader affects the first agent, the boundary is described by

A1(s) = G(s)Xref(s) − G2(s)B1(s). (8)

The free-end boundary is at the end node which has only one
neighbour. If it is located at the Nth agent, it is given by

BN (s) = G(s)AN (s). (9)

The first type of the boundary is analogous to Dirichlet boundary
condition (‘‘zero position’’) and the second to Neumann (‘‘zero
derivative with respect to position’’) [23]. The signal propagation
in the system with boundaries is shown in Fig. 3.
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