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a b s t r a c t

Due to their strong transmission loss (TL) at low frequencies, acoustic micro-membranes (AMMs) have
been the subject of many studies. In this paper, a theoretical model for AMMs is established which gives
a direct insight into their sound insulation qualities. Analysis of the model’s acoustics shows how the
sound insulation provided by a membrane can be significantly enhanced, and reveals the intrinsic char-
acteristic of AMMs in mid-low frequency range. Further analysis on two AMMs separated by an air gap
gives a quantitative description on how performance varies with the air gap. Using the theoretical model
developed here, it is a straightforward matter to adjust an AMM’s parameters to achieve a desired level of
attenuation. This work opens the way for the potential application of AMMs in noise control engineering.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Light-weight materials are extensively used in construction and
industry [1]. However, they have one overwhelming disadvantage
– low sound transmission loss – and this limits their range of appli-
cations. According to the classic theory of sound insulation, TL
increases with mass per unit area [2,3], and this obstinate ‘mass
law’ prevents the development of light-weight but high-TL
materials.

The development of metamaterials has led acousticians to
investigate the acoustic properties of small structures [4–8].
Remarkably, when AMMs are investigated [9–15], some of the
results show a novel phenomenon: although of light weight, the
membranes show high TL at low frequencies [16].

Lee and colleagues showed in 2009 that when a membrane was
arranged in layers, high TL occurred below 735 Hz [17]. Recently,
in 2015, Sui and colleagues described the acoustic properties of a
single layer membrane applied on top of a honeycomb panel
[16]. The TL of this configuration could reach 30 dB below 150 Hz
while the mass per unit area of the whole composite was only
1.5 kg/m2. This achievement has attracted considerable attention,
and a number of studies have followed [18,19]. One recent study
has shown that by adjusting various parameters the TL can be
improved even further [18].

As have been demonstrated [16–18], the abnormal behaviors of
AMMs can be regarded as the result arising from the membrane’s

apparent negative density at low frequencies. In this paper, this
remarkable performance is theoretically explained in a contrary
way. In Secs. II and III, an acoustical analysis of AMMs is presented
and the fundamental reason for their anomalous TL is provided.
Such theoretical analysis reveals the underlying link between the
AMMs and traditional materials. Finally, discussions and conclu-
sions are given in Sec. IV.

2. Sound insulation of one micro-membrane

Fig. 1(a) shows the geometry of the AMM investigated in this
paper. It is made up of a regular array of circular holes in a rigid
frame which is covered by a rubber membrane. The rigid frame
clamps the flexible membrane in place at the circumference of
the holes, which each have diameter 2r. To investigate the meta-
material’s sound transmission qualities, it is considered to be made
up of identical unit cells of membrane-covered holes, as shown in
Fig. 1(a). To derive the acoustic properties of each unit cell, two
assumptions are made: (1) the dimensions of the membrane are
far less than the wavelength of the incident sound, which is the
intrinsic characteristics of a metamaterial that is constructed in a
subwavelength scale; (2) the frame is regarded as a rigid boundary.

From these two assumptions, we can use an electro-mechanical
analogy to describe the propagation of sound through one unit cell
of the micro-membrane. Notice that, in this paper, the proposed
structure is presented as a 2D arrangement of circular membranes
clamped over a rigid frame, rendering a 3D acoustic environment
of the whole sample. However, the configuration of each unit
ensures that it generates a symmetric mode, which indicates that
we can considerably reduce the complexity of our study by just
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considering a unit mounted in a 1Dwaveguide [20]. Fig. 1(b) shows
the sound transmitting through a tube with a rigid–wall terminal.
In equivalent circuit, it represents the open-circuit voltage p0. Due
to the rigid–wall terminal, the open-circuit voltage can be obtained
as [2]

p0 ¼ pi þ pr ¼ 2pi; ð1Þ
where pi and pr are the input and reflected sound pressure near the
terminal, respectively.

Fig. 1(c) shows the path taken by a sound wave as it passes
through the membrane. The membrane’s effective mass, stiffness,
and damping are represented as Mmem, Kmem, and Rmem. Herein,
p0 represents the sound pressure on the membrane (a sum of inci-
dent and reflected pressure), while ptm and prm are radiated sound
caused by membrane vibration, in which ptm actually represents
the transmitted sound pressure. Ra designates the characteristic
impedance of air so that Ra ¼ q0c0, where q0 and c0 respectively
represent air density and sound velocity in air. Define M =Mmem/
S, C = S/Kmem, and R = Rmem/S, representing the acoustic impedance
of one unit cell, where S is the area of one unit cell so that S ¼ pr2.
Then the transmitted sound pressure can be expressed as

ptm ¼ 2piRa

Rþ 1=ðjwCÞ þ jwM þ 2Ra
: ð2Þ

where w is the angular frequency of the sound wave. The sound
pressure transmission coefficient can be expressed as tp ¼ ptm=pi.
The sound power transmission coefficient ti and sound transmission
loss TL can be obtained as:

ti ¼ jtpj2 ¼ 2Ra

Rþ 1=ðjwCÞ þ jwM þ 2Ra

����
����
2

¼ 4R2
a

½wM � 1=ðwCÞ�2 þ ðRþ 2RaÞ2
; ð3Þ

TL ¼ 10 log
1
ti

� �
¼ 10 log

½wM � 1=ðwCÞ�2 þ ðRþ 2RaÞ2
4R2

a

 !
: ð4Þ

Eq. (4) shows the fundamental resonant frequency occurs when
½wM � 1=ðwCÞ� ¼ 0; that is, when

w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ðMCÞ

p
; ð5Þ

the TL dip of the unit cell occurs.
The value C can be obtained from Kmem, which refers to the

membrane effective stiffness; it can be calculated from force F
and average displacement �x as [21]:

Kmem ¼ F=�x; ð6Þ
where F is the force acting on the membrane due to a sound wave
traveling through the membrane and generating a sound pressure
difference across it. The deformation x resulting from F is illustrated
in Fig. 1(d). Using thin-plate deformation theory, the membrane
displacement corresponding to distance l from the centre xðlÞ can
be expressed as

q ¼ H � r4xðlÞ; ð7Þ
where q is the force per unit area on the membrane so that q ¼ F=S.
H is the flexural rigidity of the thin plate, so that
H ¼ Et3=½12ð1� l2Þ�, where E is Young’s modulus, l is Poisson’s
ratio, t is thickness. In addition, the displacement xðlÞ can also be
written as [22]

xðlÞ ¼
r4 l2=r2 � 1
� �2

64H
q: ð8Þ

and the average displacement is

�x ¼ 1
pr2

Z r

0
xðlÞ � 2pldl ¼ r4q

192H
: ð9Þ

Combining Eqs. (6) and (9), the stiffness of membrane can be
obtained:

Kmem ¼ 16pEt3

r2ð1� l2Þ : ð10Þ

Actually the effective mass can be derived from the averaged
kinetic energy. Notice that the vibration displacement g can be
written in a form similar to Eq. (8), as

g ¼ q
r4ðl2=r2 � 1Þ2

64H
ejws: ð11Þ

Now consider the membrane to be made up of a large number
of rings of width dl, then the kinetic energy of each ring can be cal-
culated by

Fig. 1. (a) Metamaterial made of an array of circular holes of radius r and clamped inside a rigid frame. Each circle, of diameter 2r, is a unit cell. (b) Sound propagation in a
rigid-terminal tube. (c) Transmission of sound through one unit cell, where ptm and prm represent sound pressure radiated caused by membrane vibration. And equivalent
circuit based on electro-mechanical analogy; (d) Deformation x(l) of a clamped membrane acted on by a uniform force F. The distance from the centre of the membrane is l.
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