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In this paper, a new method is presented to correct for the distortions in beamforming maps caused by wind-
tunnel shear layers during aeroacoustic testing. The shear layer correction method can be used for any convex
shear layer shape including circles, ellipses, triangles, rectangles, octagons and squares. After deriving the
methodology and proving its equivalence to one-dimensional methods, the shear layer correction method is used
to correct the beamforming maps obtained experimentally from an airfoil placed in the potential core of a

circular jet. The results show that the method can successfully remove the distorting effects of the shear layer on
the airfoil trailing edge source distribution. Thus a new method is available to researchers to correct for the
effects of shear layers in three-dimensions, which may also be extended to three-dimensional beamforming.

1. Introduction

Acoustic measurements in open-jet anechoic wind tunnels are often
performed with the microphones located outside of the flow and in a
quiescent environment within the surrounding anechoic room [1]. This
means that ray paths describing acoustic propagation exiting the po-
tential core of the jet will cross a shear layer before reaching the mi-
crophone. The shear layer is defined as the layer of fluid between the
potential core and the stagnant flow where a velocity gradient exists in
the direction normal to the mean flow direction [2]. Consequently, the
ray paths will be refracted during their path toward the microphone,
changing the propagation time of the ray from what it would have been,
had the entire domain consisted of stagnant air. This is an important
effect to model when considering acoustic source localisation with a
phased microphone array. Phased arrays utilise the expected differ-
ences in propagation time between array microphones to phase shift
each signal the appropriate amount and accurately localise an acoustic
source [3]. Therefore, in the presence of a shear layer, time delays
based on a simple straight-line source-to-receiver model will cause er-
roneous source localisation results and must be corrected.

Currently, there are several practical methods to correct for shear
layer refraction in aeroacoustic beamforming. The most straightfor-
ward, is a simple shift of the entire source map upstream by a distance
Xs = Mh, where M is the Mach number of the potential core of the flow
and h is the distance from the source to the shear layer, see [4]. This
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method is a simple approximation based on the convected wave
equation. It is only valid for propagation perpendicular to the flow and
does not take into account refraction due to flow speed gradients. The
method has however, been shown to work sufficiently well in practice
for planar microphone arrays with low Mach number shear layers [5]
(up to a Mach number of 0.4).

Another well-established approach is the geometrical acoustics ap-
proximation [6], where sound propagation and refraction in an open jet
wind tunnel are calculated geometrically. However, this method is re-
stricted to short wavelengths, and certain diffraction phenomena are
not accounted for. The most commonly employed method to correct for
both the position as well as for amplitude of the source is the vortex
sheet method of Amiet [7]. This method involves analytically solving
for the change in propagation time due to the acoustic waves con-
vecting and refracting through the shear layer. The shear layer is as-
sumed to be an infinitely thin boundary (a line) that separates two
media; one medium where there is a mean flow and one where there is
no flow. The method is mathematically simple, but implicit for source-
receiver locations, so iterative schemes must be employed to solve for
the propagation time. As mentioned, the method is strictly only suitable
for a two-dimensional case, where the microphone and the source lie in
the same plane. Later, Amiet [8] extended the methodology for out-of-
plane source/microphone combinations (although it still has the re-
striction of a planar shear layer shape), the explicit formulation for
which is presented in Bahr et al. [9]. The amplitude correction used in
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r(u,v) = ui+y(v)j + 2(v)k

Fig. 1. Possible path of a ray travelling from source location S to receiver R. The rays will be propagated by the mean flow so that the ray intersects the shear layer at I.

Amiet’s model, which is based on the work of Ribner [10], consists of
the calculation of the sound intensity loss when the incident sound
waves are transmitted through the shear layer. Amiet’s method was
verified by a detailed experimental investigation performed by
Schlinker and Amiet [11] in an open jet wind tunnel. Besides the effect
of refraction at the shear layer, the experiments also focused on the
effect of shear layer turbulence scattering on a discrete tone. The ob-
served attenuation of the amplitude and a broadening of the tone were
found to be especially strong at angles close to the axis of the open jet.
More recently, Bahr et al. [12] described a modification to Amiet’s
method to allow for a quasi 3D shear layer (a rectangle). A method that
gives similar results to Amiet’s method regarding the localisation effects
is the approach proposed by Tester and Morfey [13] (also referred to in
[14,15]), which was later confirmed experimentally by Ahuja et al.
[16].

A third method is to numerically integrate the ray path through the
assumed (or measured) velocity field to calculate the propagation time.
The differential equations that are integrated are known as the ‘ray
tracing equations’ [17] and come as a direct consequence of an Euler-
Lagrange minimisation of the emission time (Fermat’s Principle). While
this method can theoretically account for any shear layer shape and is
more accurate than the aforementioned methods, it is extremely com-
putationally expensive and not practical when a large scanning grid is
used. A current correction method utilizes ray tracing combined with an
interpolation technique, which makes it considerably faster than tra-
ditional methods [18]. However, the method requires an explicit ex-
pression of the velocity and the velocity gradients in the jet, which may
not always be available in practical situations.

Recently, several articles [19,20] have been published on extending
source localisation into the third-dimension and it now appears prac-
tical to do so using non-planar arrays arranged around an open-jet.
However, with the exception of ray tracing (and possibly the modified
Amiet method of Bahr et al. [12]), the shear layer correction methods
described above are exclusively for 2D (planar) shear layers, and are
therefore not suitable for beamforming over a three-dimensional
scanning grid.
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Additionally, there are several instances where shear layer refrac-
tion effects cannot be accounted for accurately using Amiet’s method,
even when using a planar array to beamform a 2D scanning grid. This
situation would occur when the shape of the open jet is not planar but
curved such as a circular jet nozzle (as in the work of Geyer et al. [21])
or an octagonal jet. Morfey and Joseph [22] have developed an ana-
lytical method to calculate the ray propagation times for the specific
case of off-axis sources inside a circular jet. The method, however, does
not provide an explicit solution and is not suitable for other jet exit
profiles, such as rectangles or ellipses.

Having provided an overview of the most popular shear layer cor-
rection schemes, it is apparent that the current methods available are
either restricted to only 2D planar shear layers (Amiet’s solution), are
too specific (Morfey and Joseph’s solution), or too computationally
expensive (ray tracing, computational aeroacoustics methods). There is
thus a requirement for the development of a computationally in-
expensive method to solve the shear layer refraction problem for a
variety of shear layer shapes for use in beamforming. In this paper, a
new shear layer correction scheme is proposed as a potential solution.
The scheme can be applied to any convex shear layer profile (where the
cross-section of the shear layer is a convex shape) including circles,
ellipses, triangles, rectangles, octagons and squares, thus making it
suitable for beamforming over a three-dimensional scanning grid.

2. The shear layer correction scheme

The Shear Layer Correction Scheme (here in denoted SLCS) is in-
spired by the emission time calculation method presented by
Koop et al. [23]. In this paper, the emission time of a ray from a source
to a receiver through a planar shear layer is calculated as a one-di-
mensional time minimisation problem. Here, we extended the analysis
to three-dimensions.

Consider a point source located at position S = (x;,);,2;) that liesin a
uniform flow travelling in the x-direction (Fig. 1). The flow is bounded
by a surface r that is convex in the y—z plane. The shear flow is parallel
to this boundary. Outside of surface r, the flow is quiescent (V, = 0).
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