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a b s t r a c t

For particular playing techniques such as ‘‘pop” or ‘‘slap” in the electric bass guitar, the string collides
with frets, producing a percussive sound used in different music styles. The string/frets contacts
introduce a nonlinearity which is investigated both numerically and experimentally in this paper. A phys-
ical model, based on a modal description of the string, is implemented with an unconditionally stable
scheme. Simulations including a string/structure coupling and the two polarisations of the string are
confronted to controlled experiments, showing a good agreement for increasing amplitudes of initial con-
ditions. A parametric study is then conducted numerically in order to highlight the influence of physical
parameters on the transient behaviour and raises questions related to tuning and playing issues.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The solid-body electric bass has a recent history, opening up
during the first half of the 20th century [1]. Originally designed
to increase the sound level and to be played with better precision
than the double bass, the solid-body electric bass was inspired by
the solid-body electric guitar with four heavy strings tuned to the
same notes as the double bass [1]. The sound of the instrument is a
result of an electro-acoustic chain beginning with the string
vibratory motion. This latter is then of prime importance and can
be disrupted by its coupling with the structure of the instrument.
The string vibration decay can vary depending on the finger posi-
tion, due to the induced boundary condition, and dead spots can
be produced at a fingering position. This phenomenon may be
explained through a linear description of the coupling between
the neck and the string [2,3]. However, possible nonlinear features
are not investigated in these studies. In particular, among playing
techniques adopted by musicians, some rely on a percussive aspect
of the sound, implying contacts between vibrating strings and the
neck. Two typical such playing modes are ‘‘pop”, for which the
string is plucked hardly enough to generate contact, and ‘‘slap”,
for which the string is hit with the thumb, also resulting in string/
neck contacts [4]. The string/obstacle contact introduces nonlin-

earity, that has been widely studied numerically. The highly non-
linear behaviour of the string vibrating in presence of an obstacle
makes the problem stiff and implies numerical difficulties, in par-
ticular regarding stability. Among existing numerical methods,
some models use waveguides [5–7], which reproduce effects
through signal processing, or energy-based methods [8–11], ensur-
ing a good stability to employed schemes. Some models rely on a
modal description of the string [12,13,10,11], which possibly
enables a fine description of the string linear characteristics such
as damping. Only a few studies present experimental signals with
an isolated string or a complete instrument in order to give a
comparison point for their simulations [12,14,11,15], the latter
being applied to slap on electric basses. In [16], a listening test is
performed to evaluate the synthesis algorithm.

The present paper aims at presenting a numerical tool to simu-
late musical strings vibrating against a unilateral distributed obsta-
cle, and confronting it to experiments into detail. The method is
applied to the pop attack on electric basses, for which the string
is plucked with a sufficiently large amplitude so that contact
occurs and gives the sound a percussive timbre during the attack
transient. The objective of such a numerical tool is to move forward
the comprehension of the string behaviour when colliding with a
fretboard, through the study of some key parameters. The
employed numerical model is presented in Section 2. A controlled
experimental protocol is then proposed in Section 3. Numerical
and experimental signals are confronted in Section 4, and a
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numerical parametric study is led in order to highlight the influ-
ence of some parameters on the resulting sound, some of which
may be related to playing and instrument making issues.

2. Model

2.1. Model of a string vibrating against an obstacle

A stiff string of length L, mass per unit length l, tension T,
Young’s modulus E and moment of inertia I is considered. The
string (see Fig. 1) vibrates in the presence of an obstacle having a
profile gðxÞ which is constant along ðOyÞ and under the string at
rest. The transverse displacements uðx; tÞ and vðx; tÞ of the string
along ðOzÞ and ðOyÞ respectively are described by Eq. (1), in which
the subscript t (respectively x) refers to a partial derivative with
respect to time (respectively space):

lutt � Tuxx þ EIuxxxx ¼ f ð1aÞ
lv tt � Tvxx þ EIvxxxx ¼ f f ; ð1bÞ
where the right-hand sides f (contact force per unit length) and f f
(friction force per unit length) are fully described later.

Simply supported boundary conditions at the string endpoints
are employed, this corresponds to a common assumption for musi-
cal strings with a weak stiffness, see e.g. [12,17]. For the sake of
conciseness, the next equations are only detailed for the vertical
displacement u, but of course also apply to the horizontal displace-
ment v. Boundary conditions read, 8t 2 Rþ:

uð0; tÞ ¼ uðL; tÞ ¼ uxxð0; tÞ ¼ uxxðL; tÞ ¼ 0: ð2Þ
The displacement is then spatially discretised by using Nm

eigenmodes:

uðx; tÞ ¼
XNm

j¼1

qjðtÞ/jðxÞ; ð3Þ

with /jðxÞ ¼
ffiffi
2
L

q
sin jpx

L

� �
and qj the jth modal amplitude.

Inserting this expression in Eq. (1a), using standard Galerkin
projection technique and adding losses, one finally obtains a sys-
tem of oscillators for the unknown q ¼ ½q1; q2; . . . qNm

�T gathering
the modal amplitudes as:

lð€qþX2qþ 2! _qÞ ¼ F; ð4Þ
where X and ! are diagonal matrices with coefficients
Xjj ¼ xj ¼ 2pmj; mj being the jth eigenfrequency, and !jj ¼ rj, which
corresponds to the jth damping coefficient.

A penalty approach is selected to express the contact force per
unit length, following [9,11]:

f ðgðx; tÞÞ ¼ K gðx; tÞ½ �aþ; ð5Þ
where gðx; tÞ ¼ gðxÞ � uðx; tÞ represents the penetration of the string
into the barrier, and ½g�þ ¼ 1

2 gþ jgjð Þ. The regularised contact force

thus depends on two parameters K and a, and derives from a
potential w:

f ¼ dw
dg

; where wðgÞ ¼ K
aþ 1

g½ �aþ1
þ : ð6Þ

The friction force per unit length f f , acting on the polarisation
along ðOyÞ, is selected as a regularised empirical Tresca friction
law [18,19], and reads:

f f ðu; v tÞ ¼ A

1 if v t < �s and u < g

�v t=s if v tj j 6 s and u < g

�1 if v t > s and u < g

0 if u P g;

8>>><>>>: ð7Þ

where v t is the transverse velocity of the string along ðOyÞ, and A (N.
m�1), s > 0 (m.s�1) are two ad hoc parameters. A number of studies
in the literature use a regularised friction force [20,21]. Note that
such a friction force only allows one equilibrium position, this
may lead to incorrect behaviours in some configurations [22].

In order to take into account the vibrations of the neck, the
mobility at the nut is then added to complete the model. In the
case of solid-body electric guitars and basses, it has been shown
that the bridge mobility is negligible as compared to that at the
nut [3,2]. Moreover, as detailed in Section 2.2, the coupling is weak
so that taking into account the nut mobility only alters linear
characteristics.

2.2. Linear characteristics models

The influence of the dispersion due to the stiffness of the string,
though small, needs to be taken into account. Also, under the pre-
viously exposed assumption of weak coupling at the nut and as
done in [3] for electric guitars, the eigenfrequencies are modeled
following the relationship, for each mode j:

mj ¼ j
c
2L

1þ Bj2

2
þ lc

jp
ImðYnutðx0;jÞÞ

 !
; ð8Þ

where c ¼
ffiffiffi
T
l

q
is the wave velocity of the ideal string, B ¼ p2EI

TL2
is the

inharmonicity coefficient and Ynut is the mobility at the nut, evalu-
ated at x0;j ¼ j pcL . In the present study, B is deduced from measure-
ments (see Section 3.2).

The modal loss factor is evaluated thanks to the model exposed
in [12,3]. For mode j, the quality factor Qj is used to express the
modal damping factor rj via Qj ¼ pmj=rj, where Qj is modeled as:

Q�1
j ¼ Q�1

j;air þ Q�1
j;ve þ Q�1

te þ lc2

pLmj
Re YnutðxjÞ
� �

: ð9Þ

In this model, the subscripts air; ve and te respectively refer to
losses due to air friction, viscoelastic and thermoelastic effects.

Contribution of friction with air writes:

Q�1
j;air ¼

jc
2Lmj

R
2plmj

; ð10Þ

where R ¼ 2pgair þ 2pdeq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffipgairqairmj

p
, with gair and qair the dynamic

viscosity coefficient and the air density respectively. Usual values
(for standard temperature and pressure conditions) are selected
here as: gair ¼ 1:8� 10�5 kg�m�1�s�1 and qair ¼ 1:2 kg�m�3. Vis-
coelastic effects are supposed to be concentrated in the string core
[12], so that their contribution to global losses is given by:

Q�1
j;ve ¼

4p2lEcoreIcoredve
T2

m30;j
mj

; ð11Þ

where Ecore is the Young’s modulus of the core, Icore ¼ pr4core=4 is the

moment of inertia of the core, with rcore the core radius, and m0;j ¼ jc
2L

Fig. 1. A string of length L vibrating against a bass guitar fretboard represented by
the function g.
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