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a b s t r a c t 

In the Gray–Scott reaction–diffusion system one reactant is constantly fed in the system, 

another reactant is reproduced by consuming the supplied reactant and also converted to 

an inert product. The rate of feeding one reactant in the system and the rate of remov- 

ing another reactant from the system determine configurations of concentration profiles: 

stripes, spots, waves. We calculate the generative complexity—a morphological complex- 

ity of concentration profiles grown from a point-wise perturbation of the medium—of the 

Gray–Scott system for a range of the feeding and removal rates. The morphological com- 

plexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel–

Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse 

behaviour of the systems with highest values of the generative morphological complex- 

ity and show that the Gray–Scott systems expressing highest levels of the complexity are 

composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and 

travelling localisations (similar to quasi-dissipative solitons and gliders in Conway’s Game 

of Life). 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The Gray–Scott model [10,20,39] is a system of two reactants U and V : the reactant U is fed into the system, the reac- 

tants V is present in the system initially, one molecule of U reacts with two molecules of V producing three molecules of V . 

The model bears a striking similarity to the Lotka–Volterra model [24] , where U is a prey, V is a predator and the Sel’kov 

model of glycolisis [42] , where U is a substrate, V is a product; analogy with two-variable Oregonator model of Belousov–

Zhabotinsky medium [15,38] , where U is a catalyst and V is activator, are less obvious however spatio-temporal dynamics is 

often matching. The spatially extended Gray–Scott model with low coefficients of reactants diffusion shows a rich variety of 

concentration profile patterns: stripes, spots, waves [20,39] . Concentration patterns which attracted most attention include 

spots and auto-solitons [5,11,33,35,44] , rings [29] , self-replicating patterns [12,22,32,36,40] , stripes [17,21] , spiral waves [9] . 

The patterns are governed by a rate of feeding U and a rate of removal of V . Pearson [39] proposed a phenomenological clas- 

sification of Gray–Scott model based of configurations of concentration profiles. The Pearson classification was detailed and 

extended by Munafo [30,31] and mapping between the Pearson–Munafo classes and Wolfram’s classes of elementary cellu- 

lar automata [46] has been proposed. Many interesting results have been obtained with Gray–Scott model but no evaluation 

of its complexity has been done so far. 

Complexity of reaction–diffusion (RD) systems is a weakly studied topic. We are aware of works publications where com- 

plexity is evaluated via entropy of a symbolic dynamics of RD equations and topology of attractors [48] , rates of growth of 

small perturbations of solutions of reaction–diffusion equations [18] , and from ‘edge of chaos’ perspective in analysing local 
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activity dynamics in cellular nonlinear networks [14] . The approach employed in [14] is adopted from cellular automata 

theory, namely entropy or mutual information measures proposed in [19,23] to classify cellular automaton rules quantita- 

tively. Space-time dynamic of cellular automata gives a satisfactory yet very coarse-grained analogies of patterns exhibited 

in reaction–diffusion systems [6,8,45] , even a binary-state two-dimensional automata exhibits most patterns found in Gray–

Scott models [4] , therefore that would be reasonable to apply complexity measures developed in cellular automata to the 

Gray–Scott system. Entropy has been applied to classify cellular automata for a long time [19,23] , and it proved to be valid 

in supporting phenomenological classification of automaton dynamics and structures of their global transition graphs [47] . 

The compressibility [51] was proposed in [16] for classifying properties of patterns in spatially-extended non-linear systems, 

it was shown that the compressibility gives a finer discrimination on properties of the systems than Lyapunov exponent. 

Compression-based complexity of cellular automata evidence a match between the clusters of configuration compressibil- 

ity and phenomenological classes of automaton behaviour [49] . Morphological richness (measured as a ratio of all possible 

configuration of a cell neighbourhood) and generative diversity (morphological complexity of a pattern developed from a 

single seed) [3] have been proved to be satisfactory tool for analysis of cellular-automaton evolution [34] and classification 

of excitation rules in two-dimensional cellular automata. Thus we evaluate morphological complexity of the Gray–Scott sys- 

tems using Shannon entropy, Simpson diversity, and Lempel–Ziv compressibility. To avoid parameterisation of initial random 

conditions we considered only the generative complexity—the diversity of patterns developed from a point-wise local per- 

turbation of otherwise resting medium. This approach is already proved to be efficient in studying complexity of cellular 

automata, and discrete models of excitable systems and populations [1–3] . 

2. Gray–Scott model 

The Gray–Scott model [39] is comprised of two reactants U and V reacting as follows: 

→ U 

U + 2 V → 3 V 

V → P 

where P is inert product, reactant U is fed with rate k , reactant V is converted to inert product P with rate F, U reacts with 

V with rate 1. The corresponding reaction–diffusion equations for concentrations u and v are 

∂u 

∂t 
= D u ∇ 

2 u − u v 2 + F (1 − u ) 

∂v 
∂t 

= D v ∇ 

2 v + u v 2 − (F + k ) v 

We integrated the system using forward Euler method with five-node Laplace operator, time step 1 and diffusion co- 

efficients D u = 2 × 10 −5 and D v = 10 −5 ; these parameters have been chosen to stay compatible with [39] . We evaluated 

complexity measures by taking a grid of 256 × 256 nodes, each node x but four assigned concentration values u x = 1 and 

v x = 0 , four neighbouring nodes at the centre of the lattice assigned v x = 1 : 
1 1 

1 1 

For a given pair ( k, F ) the grid allowed to evolve until propagation of the perturbation, measured as v > 0.3, reached 

a boundary of the grid, or no changes between two subsequent concentration profiles observed, or a number of itera- 

tions exceeded 10 3 . The measures were calculated on concentration profiles after the halting. Snapshots illustrating the 

reaction–diffusion patterns are in RGB format. Concentrations of U and V in each node x are converted to RGB colour of the 

corresponding pixel x as (R, G, B ) = (u x · 255 , 0 , v x · 255) . Scale 0.1 of original size. 

3. Complexity measures 

We evolved the systems and evaluated complexities for 8320 pairs ( k, F ), where k ∈ [0.020, 0.072], F ∈ [0.010, 0.17], incre- 

ments 0.001. 

When evaluating complexity measures we binarised concentration profile of V as follows. The 256 × 256 nodes grid of 

concentrations is mapped onto an array L of 256 × 256 cells, where each cell x is assigned value ‘1’ if the concentration 

of V at the corresponding grid node x exceeds 0.3; otherwise the cell is assigned value ‘0’. Let W = { 0 , 1 } 9 be a set of all 

possible configurations of a 9-node neighbourhood B x including the central node x . Let B be a configuration of matrix L , we 

calculate a number of non-quiescent neighbourhood configurations as η = 

∑ 

x ∈ L ε(x ) , where ε(x ) = 0 if for every resting x 

all its neighbours are resting, and ε(x ) = 1 otherwise. 

The Shannon entropy H is calculated as H = − ∑ 

w ∈ W 

(ν(w ) /η · ln (ν(w ) /η)) , where ν( w ) is a number of times the neigh- 

bourhood configuration w is found in configuration B . 

Simpson’s diversity S is calculated as S = 

∑ 

w ∈ W 

(ν(w ) /η) 2 . Simpson diversity linearly correlates with Shannon entropy 

for H < 3; relationships become logarithmic for higher values of H ( Fig. 1 a). 

Lempel–Ziv complexity (compressibility) LZ is evaluated by a size of concentration profiles saved as PNG files of the 

configurations, this is sufficient because the ‘deflation’ algorithm used in PNG lossless compression [7,13,41] is a variation of 
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