
Commun Nonlinear Sci Numer Simulat 54 (2018) 233–247 

Contents lists available at ScienceDirect 

Commun Nonlinear Sci Numer Simulat 

journal homepage: www.elsevier.com/locate/cnsns 

Research paper 

Solving of the coefficient inverse problems for a nonlinear 

singularly perturb e d reaction-diffusion-advection equation 

with the final time data 

� 

D.V. Lukyanenko 

a , ∗, M.A. Shishlenin 

b , c , d , V.T. Volkov 

a 

a Department of Mathematics, Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia 
b Sobolev Institute of Mathematics, Novosibirsk 630090, Russia 
c Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia 
d Novosibirsk State University, Novosibirsk 630090, Russia 

a r t i c l e i n f o 

Article history: 

Received 13 August 2016 

Revised 24 December 2016 

Accepted 3 June 2017 

Available online 6 June 2017 

MSC: 

65M32 

65L04 

65L12 

65L20 

65M20 

35G31 

Keywords: 

Singularly perturbed problem 

Interior and boundary layers 

Dynamically adapted mesh 

Reaction-diffusion-advection equation 

Coefficient inverse problem 

Final time observed data 

a b s t r a c t 

We propose the numerical method for solving coefficient inverse problem for a nonlinear 

singularly perturbed reaction-diffusion-advection equation with the final time observation 

data based on the asymptotic analysis and the gradient method. Asymptotic analysis allows 

us to extract a priory information about interior layer (moving front), which appears in the 

direct problem, and boundary layers, which appear in the conjugate problem. We describe 

and implement the method of constructing a dynamically adapted mesh based on this a 

priory information. The dynamically adapted mesh significantly reduces the complexity of 

the numerical calculations and improve the numerical stability in comparison with the 

usual approaches. Numerical example shows the effectiveness of the proposed method. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper the numerical method for solving the coefficient inverse problem for singularly perturbed reaction- 

diffusion-advection (RDA) equations with the final time observation data is developed. The method is based on the asymp- 

totic analysis and optimization method. Due to the nonlinearity of the considered direct and inverse problems we minimize 

the cost functional by the gradient method to find approximate solution of the coefficient inverse problem. On each step of 

the gradient method the direct and corresponding conjugate problems are solved. The statements of these problems have 

the small parameter at higher derivative. Therefore the solutions of direct and conjugate RDA problems often feature narrow 
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boundary and interior layers (stationary or moving fronts) and are extremely difficult for a numerical treatment. The main 

idea of our approach is that the asymptotic analysis of the direct problems allows to reduce significantly the complexity 

and optimize the numerical calculations, save the computational resources and improve the numerical stability of solving of 

corresponding singularly perturbed inverse problems. 

The asymptotic analysis allows us to locate boundary and interior layers and to develop an efficient algorithm due to the 

following reasons: the smaller the parameter, the more rough and unstable numerical solution we obtain and more precise 

a priori information about the exact solution we get from asymptotic analysis. This fact gives the possibility for a productive 

combination of asymptotic and numerical approaches. 

Asymptotic analysis also allows to prove the existence of the solution of certain class for the direct problem and high- 

light a priori information for solving of the inverse problem. Moreover, if consider the solutions with the internal layers or 

moving fronts, the spatial dimension of some problems for numerical calculations can be decreased. For example, to ob- 

tain a priori information about the location or the speed of the internal layer (moving front) we solve the equations with 

less spatial dimension than the original partial differential equation (PDE) problem. Namely, if the original PDE problem 

is n –dimensional, the equation for the moving front location is (n − 1) –dimensional (this equation can be even ordinary 

differential or algebraic). 

We demonstrate our approach on solving of initial-boundary problem for the following singularly perturbed reaction- 

diffusion-advection equation ( ε � 1): 

ε 
∂ 2 u 

∂x 2 
− ∂u 

∂t 
= −u 

∂u 

∂x 
+ q (x ) u. (1.1) 

This type of equation or systems are used in mathematical models of biology, chemical kinetics, theory of combustion e.t.c. 

The asymptotic analysis of the direct problem for Eq. (1.1) has been already performed in [1,2] . Later it was applied to 

construct the dynamically adapted mesh based on the a priory information about the solution [3] . 

Different types of using a priori information in coefficient inverse problems were considered in [4–6] but in this pa- 

per we represent completely new approach that allows to solve inverse problems for singularly perturbed equations more 

effectively. 

The paper is structured as follows. In Section 2 we discuss the general statement of the coefficient inverse problem 

which solution usually can not have any special features, however during the solution of relevant direct and conjugate 

problems, the difficulties connected with the interior and boundary layers may arise. Then, in Section 3 , we formally men- 

tion the general method of its solution. In Section 4 we describe the main ideas of asymptotic theory that allows to get a 

priori information for the dynamically adapted mesh construction. In Section 5 we explain some nuances of the dynamically 

adapted mesh constructing. In Section 6 we perform a numerical experiment for some particular example to demonstrate 

the effectiveness of the proposed asymptotic-numerical approach. 

2. Problem formulation 

Let us consider the direct problem ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε 
∂ 2 u 

∂x 2 
− ∂u 

∂t 
= −u 

∂u 

∂x 
+ q (x ) u, x ∈ (0 , 1) , t ∈ (0 , T ) , 

u (0 , t) = u l (t ) , u (1 , t ) = u r (t) , t ∈ (0 , T ) , 

u (x, 0) = u 0 (x ) , x ∈ (0 , 1) . 

(2.1) 

Inverse problem consists of finding function q ( x ) by known additional information: 

u (x, T ) = f obs (x ) , x ∈ (0 , 1) . (2.2) 

We apply the optimal control problem for the numerical solution (2.1) –(2.2) . 

Ill-posedness analysis 

Let us show that the inverse problem (2.1) –(2.2) is ill-posed [7] . We will analyse two formulations of inverse problem: 

linear and nonlinear. 

Let us investigate ill-posedness of the problem of recovering the initial data by known final time measured data (reverse 

time problem). We will construct the example of instability. The problem of recovering the initial data is more ”simple” in 

comparison with the original problem formulation. Therefore, if we investigate the ill-posedness of reverse time problem, 

we can expect that the instability effects will influence harder in the numerical algorithm of the solution of the nonlinear 

coefficient inverse problem. 

The linear analog of the problem (2.1) is: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε 
∂ 2 u 

∂x 2 
− ∂u 

∂t 
= −∂u 

∂x 
, x ∈ (0 , 1) , t ∈ (0 , T ) , 

u (0 , t) = 0 , u (1 , t) = 0 , t ∈ (0 , T ) , 

u (x, 0) = q (x ) , x ∈ (0 , 1) . 

(2.3) 
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