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a b s t r a c t 

In this study, the smoothed profile-lattice Boltzmann method (SP-LBM) is proposed to determine the con- 

tact line dynamics on a hydrophobic or a hydrophilic curved wall. Two types of smoothed indicator func- 

tions are introduced, namely a function that identifies the solid domain for non-slip and non-penetration 

conditions and a function that denotes the boundary layer for no mass-flux and the wetting boundary 

conditions. In order to prevent fluid penetration into the solid boundary, the fluid-solid interaction force 

is computed based on the definition of the fluid velocity as proposed by Guo et al. [1]. In order to imple- 

ment the Neumann boundary conditions for the order parameter and the chemical potential, the fluxes 

from the solid surfaces are distributed to relevant physical valuables through a smoothed profile. Several 

two-dimensional and three-dimensional numerical investigations including those determining the Cou- 

ette flows, flow around a circular cylinder, transition layer on a wetting boundary, and dynamic behavior 

of a droplet on a flat or curved plate demonstrate the efficiency of the present method in calculating 

the contact angle of a droplet on curved surfaces with wall impermeability. The present model provides 

a simple algorithm to compute the surface normal vector and contact line dynamics on an arbitrarily 

shaped boundary by using a smoothed-profile. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Hydrophobic surfaces have attracted considerable attention be- 

cause of significant scientific applications such as water repel- 

lency, lubricity, and self-cleaning and antifouling properties. Wet- 

tability of solid surfaces is governed by the chemical composition 

and the geometric structure of a surface. For example, the super- 

hydrophobicity of lotus leaves principally results from the presence 

of binary structures at both micrometer and nanometer scales and 

the low energy wax-like materials on the surfaces [2] . 

A previous study developed a phase-field model that couples 

Cahn–Hilliard and Navier–Stokes equations, and a good agreement 

was observed between the numerical results and the experimen- 

tal data with respect to the spreading of a liquid droplet on 

a smoothed and chemically homogeneous surface [3,4] . Physical 

properties continuously vary in the interface between two phases 

in a phase-field model based on free-energy theory [5] . With re- 

spect to the study of the contact-line movement, the phase-field 

model sets the wetting potential that corresponds to a contact an- 

gle on the boundary, and satisfies the following three boundary 
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conditions, namely non-slip condition, non-penetration condition, 

and no mass-flux condition, ∂ μφ/∂ n = 0 . Specifically, μφ denotes 

the chemical potential, and ∂ / ∂ n denotes the normal derivative. 

The lattice Boltzmann method (LBM) computes fluid dynam- 

ics by the evolution of distribution functions on the discrete lat- 

tice [6] . The LBM satisfies mass and momentum conservations and 

is suitable for computing multi-phase and multi-component flows. 

A color-field model and an inter-particle-potential model were pro- 

posed to easily capture irregular topological changes, interface dis- 

integration, and coalescence in a multi-phase flow [7,8] . These 

models were useful in simulating contact-line dynamics by con- 

trolling the concentration on a wall [9–11] . The phase-filed model 

in combination with LBM was extended to consider the contact an- 

gle of a liquid placed on a flat surface by using the relation be- 

tween the normal derivative of the order parameter and the wet- 

ting potential [12–14] . The difficulty in treating large density dif- 

ference in the lattice Boltzmann scheme was solved such that the 

spreading phenomena of a droplet on a flat hydrophobic surface 

could be computed quantitatively [15–19] . The LBMs succeeded 

in verifying the effect of roughness on the wettability of a wall 

through the numerical simulation of droplet dynamics on a square 

pillar microstructure [20–22] . A bounce back on the node or half- 

way bounce back schemes are used in the fore-mentioned studies, 
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and thus, a smooth curved boundary was approximated by a series 

of staircases. 

Filippova proposed an interpolation method to compute the 

fluid flow around an arbitrarily shaped boundary in a uniform reg- 

ular Cartesian mesh in the LBM [23] . This was followed by studies 

that enhanced the accuracy and mass conservation by the modifi- 

cations of the interpolation approach of the distribution functions 

between a boundary and fluid nodes [24,25] . In order to obtain the 

distribution function reflected from a curved wall, it is necessary to 

compute the distance between the wall surface and the reference 

nodes along each discrete velocity direction in an interpolation ap- 

proach. Immersed boundary-lattice Boltzmann methods (IB-LBM) 

can deal with an arbitrarily complex geometry by imposing a fluid- 

solid interaction force on Lagrangian points [26–28] . When com- 

pared to the sharp interface scheme, the IB-LBM with a diffuse- 

boundary approach simply obtains the fluid-solid interaction by 

employing a discrete delta-function to transfer quantities between 

the Eulerian and Lagrangian nodes [29,30] . Feng and Michaelides 

proposed IB-LBM based on the direct forcing method to obtain the 

force based on the difference between the fluid velocity and the 

desired velocity at the boundary without requiring a user-defined 

stiffness parameter [27] . Although the aforementioned explicit IB- 

LBMs succeeded in simulating the sedimentation of particles in an 

enclosure, they led to a spurious fluid mass exchange between the 

interior and exterior of a solid domain due to the inexactness of 

the non-slip boundary conditions [26–28] . Wu proposed an im- 

plicit velocity correction-based IB-LBM to provide force density and 

velocity correction by solving a system of equations using an in- 

verse of matrix [31] . The IB-LBMs were proposed to accurately sat- 

isfy non-slip boundary conditions through an iterative correction 

of body force on the Lagrangian and Eulerian nodes [32–34] . The 

non-slip boundary condition was accurately enforced, and there- 

fore, the implicit correction method succeeded in preventing the 

penetration of a fluid into a solid surface observed in the conven- 

tional IB-LBMs and contributed to reducing the velocity slip [35] . 

Most existing IB-LBMs focused on Dirichlet boundary conditions. 

In order to investigate hydrodynamics on the complicated bi- 

nary structured surface, Shao developed an immersed boundary- 

phase field-lattice Boltzmann method that embodied Neumann 

boundary conditions [36] . The primary concept of Shao’s method 

involved interpreting the Neumann boundary conditions as a con- 

tribution of flux from the surface to the relevant physical variables 

in a control volume. The main feature of Shao’s approach corre- 

sponded to the IBM that corrected the temperature on the La- 

grangian points to implement Neumann (heat flux) conditions [37] . 

Information on the normal direction on a solid surface is necessary 

to examine the wettability of a solid boundary, and thus, it is nec- 

essary to compute normal directions on the Lagrangian points from 

the positions of the neighboring points. In the IB-LBM, it is neces- 

sary to equidistantly locate the Lagrangian points on the solid sur- 

face to form the even distribution of a solid-fluid interaction force. 

An adequate mesh generator and an algorithm are necessary to 

calculate the normal vector to the surface to simulate contact line 

dynamics with a lotus-leaf-like complicated geometry by the IB- 

LBM. With respect to the two-way coupling of an incompressible 

fluid with rigid bodies of an arbitrary shape, a different approach 

based on the smoothed-profile method (SPM) was introduced into 

the LBM field [38,39] . The SPM defines a spatial indicator field to 

yield the boundary force in Navier–Stokes equations without the 

Lagrangian points and without the boundary-fitted coordinate sys- 

tem. The indicator profile smoothly transitions between the fluid 

and solid regions and is a function of the distance from the solid 

surface [40] . It is expected that the SP-LBM can compute the nor- 

mal vector to the surface from the Laplacian of the indicator pro- 

file in a manner similar to the level set method [41] . In the present 

study, the SP-LBM is developed to investigate the effect of surface 

wettability on droplet dynamics under the Dirichlet boundary con- 

ditions for velocity and under the Neumann boundary conditions 

for a chemical potential and for an order parameter (the phase 

field). 

The remainder of the paper is organized as follows. 

Section 2 describes the SP-LBMs for incompressible single-phase 

and two-phase flows in detail. The section includes the techniques 

for reducing fluid penetration and implementing Neumann bound- 

ary conditions in SP-LBMs in two subsections. The simulation 

procedures are summarized. Section 3 provides numerical exper- 

iments to demonstrate the accuracy and utility of the proposed 

method. The cylindrical Couette flow, the fluid flow around a 

circular cylinder, and the axial Couette flow are calculated to 

validate the non-slip and non-penetration boundary conditions in 

two and three dimensions. In order to validate the no mass-flux 

and the wetting boundary conditions, we compute a transition 

layer on a cylinder and on a sphere, derive the equilibrium state 

of the contact angle of a droplet on a flat or curved plate, and 

predict the contact-line motion along a curved surface. Finally, 

concluding remarks are presented in Section 4 . 

2. Smoothed profile-lattice Boltzmann method 

2.1. Non-slip and non-penetration conditions 

2.1.1. Lattice Boltzmann method for single-phase flow 

The lattice Boltzmann method for the incompressible Navier–

Stokes equations uses the following kinetic equations for the dis- 

tribution function f α: 

˜ f α( x , t) = f α(x , t) − f α(x , t) − f (eq ) 
α (x , t) 

τn 
+ δt F α(x , t) , (1) 

f α(x + c αδt , t + δt ) = 

˜ f α(x , t) , (2) 

where ˜ f α denotes post-collision value, δt denotes time step, c α de- 

notes discrete velocity, and F α denotes a forcing term. The fluid 

density and velocity are conventionally expressed in terms of the 

distribution function as follows: 

ρ = 

∑ 

α

f α, u = 

1 

ρ

∑ 

α

f αc α. (3) 

The D2Q9 and D3Q19 models are used in the present study. The 

D2Q9 model defines the discrete velocities as follows: 

c α = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(0 , 0) α = 0 

c(±1 , 0) , c(0 , ±1) α = 1 − 4 

c(±1 , ±1) α = 5 − 8 

, (4) 

where c denotes lattice velocity magnitude. 

With respect to the D3Q19 model, the discrete velocity set can 

be expressed as follows: 

c α = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(0 , 0 , 0) α = 0 

c(±1 , 0 , 0) , c(0 , ±1 , 0) , c(0 , 0 , ±1) α = 1 − 6 

c(±1 , ±1 , 0) , c(±1 , 0 , ±1) , c(0 , ±1 , ±1) α = 7 − 18 

. (5) 

The equilibrium distribution function is given as follows: 

f (eq ) 
α = ω αρ

[ 
1 + 

3 c α · u 

c 2 
+ 

9(c α · u ) 2 

2 c 4 
− 3 u · u 

2 c 2 

] 
, (6) 

where ω α denotes the weight coefficients. With respect to the 

D2Q9 model, ω 0 = 4 / 9 , ω 1 −4 = 1 / 9 , and ω 5 −8 = 1 / 36 . With re- 

spect to the D3Q19 model, ω 0 = 1 / 3 , ω 1 −6 = 1 / 18 , and ω 7 −18 = 

1 / 36 . Conventionally, the forcing term is defined as follows: 

F α = ω αρ
3 c α · G 

c 2 
, (7) 
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