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a b s t r a c t 

In this work, the dissipative particle dynamics method is used to explore the thinning process of a liq- 

uid bridge transforming from macroscopic factor domination to thermal fluctuation domination. Both the 

inertial–force–dominated thinning profile and the thermal–fluctuation–dominated thinning profile are of 

self–similarity characteristics. Our simulations show that the scaling factors are in accordance with the- 

oretical results. To explore crossover behavior, concentration is on the transitional regime, where both 

macroscopic factor domination and microscopic factor domination can be observed. The crossover time 

depends mainly on the stochastic coefficient. With the conservative forces not being considered, the 

decrease of the stochastic coefficient results in a wider thermal-fluctuation-dominated regime, but the 

crossover radius remains nearly unchanged. It is found that the increase in viscosity aids in the domi- 

nance of the thermal fluctuations and the emergence of the double–cone breakup profile. Surface stress 

fluctuations and bulk density fluctuations are examined to investigate the origin of the crossover. The 

results of these simulations suggest that the key factor of the crossover is the fluctuation correlation 

length, rather than the strength of the interfacial stress fluctuations. The simulation results also support 

the conclusion of previous researchers who have determined that it is the balance between the driving 

capillary pressure and the thermal energy density in the neck that causes crossover. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

A liquid bridge, or liquid thread tends to thin and breakup be- 

cause of surface-tension-driven instability. The study of this event 

is of significant engineering and scientific importance because of 

the fundamental position of the droplet formation in many engi- 

neering applications such as atomization, spraying, fiber spinning, 

ink printing and many silicon chip technologies [1] . The singularity 

that forms as the fluid neck pinches off renders this problem very 

challenging. The self-similarity theory was typically used to inves- 

tigate the nature of the singularity [1,2] . When the self-similarity 

is applied, the profile of the liquid bridge h ( z, t ) can be written as: 

h (z, t ) = 

l c 

t αc 
(t ∗ − t ) α f 

(
t 
β
c 

l c 

z 

(t ∗ − t ) β

)
, (1) 

where h ( z, t ) is the radius of the liquid bridge at axial coordi- 

nate z and time t, l c is a fixed length scale l c = η2 /ρλ and t c is 

a fixed time scale t c = η3 /ρλ2 , with η, λ and ρ being respec- 

tively the shear viscosity, surface tension and liquid density. The 
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function f is a universal similarity function. The variable t ∗ denotes 

the moment at which the liquid bridge breaks, α and β are scaling 

factors along the radial and axial directions, respectively. Various 

regimes with different dominating factors and scaling relationships 

have been identified by both theoretical and experimental analy- 

sis. Under the conditions of small viscosity, thinning is dominated 

by the interplay of surface tension and inertial forces, the scaling 

power α equals 2/3 [3,4] ; so the neck radius h ( z 0 , t ) thins with 

h min (t) ∝ (t − t ∗) 2 / 3 , where z 0 is the breakup position. And if the 

viscosity is large enough to have an effect, the scaling power α
equals 1.0 [5] ; so the neck radius will thin with h min (t) ∝ (t − t ∗) . 

With the rapid development of nano technology, the thinning 

and breakup problem of a nanoscale liquid bridge is also gaining 

attention. It has been found that in nanoscale the thermal fluctua- 

tions will dominate. Theoretical analysis, molecular dynamics sim- 

ulations and experiments all show that, in this situation, the scal- 

ing power will be 0.42; so the neck radius will thin with h min (t) ∝ 

(t − t ∗) 0 . 42 [6,7] . Thermal fluctuations also cause the thinning pro- 

file to take on a unique double-cone (DC) shape with the satellite 

droplet being effectively suppressed. 

In general, the characteristics of a thinning liquid bridge 

dominated by the microscopic factor (thermal fluctuations) are 

very different from a bridge dominated by macroscopic factors 
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(inertial force and viscosity). The problem of how the crossover 

from macroscopic-factor-dominated to thermal-fluctuation- 

dominated occurs remains to be solved [7] . A potential tool 

to investigate this problem is the molecular dynamics (MD) 

method. Given enough atoms and elapsed time, the MD simula- 

tion can imitate the entire thinning process, in which the radius of 

the liquid bridge is at first so large that it thins with the thermal 

fluctuations being negligible, then, with the radius becoming 

smaller, the thermal fluctuations inevitably begin to take effect. 

But this type of simulation will entail considerable computation 

resources. An alternative approach is to simulate the process with 

a mesoscopic method, such as dissipative particle dynamics. 

Dissipative particle dynamics (DPD) is a coarse-grained method 

introduced by Hoogerbrugge and Koelman [8,9] . The particles 

in this model represent clusters of many atoms. It is neither 

molecular nor continuum, but it exhibits hydrodynamic behav- 

ior and has thermal fluctuations that can drive Brownian mo- 

tions [10] . The DPD method and its derivation – the multi-body 

DPD have been used to investigate the instability problem of 

a liquid thread [11,12] . They are also able to quantitatively re- 

produce both the macroscopic–factor–dominated and thermal–

fluctuation–dominated thinning process of a liquid bridge [13,14] ; 

so it is reasonable to anticipate that the crossover behavior can 

be conveniently explored using this method. This research uses 

the DPD method to investigate the crossover behavior of a liquid 

bridge thinning from macroscopic–factor–domination to thermal- 

fluctuation-domination. 

2. Methods 

2.1. Dissipative particle dynamics 

In the DPD method, every particle represents a cluster of atoms 

or a fluid region rather than a single atom. Pairwise random forces 

and dissipative forces are included in DPD to compensate for the 

excluded internal degrees of freedom inside particles. The total 

force F ij between each pair of DPD particles is of the form: 

F i j = F C i j + F D i j + F R i j , (2) 

where F C 
i j 

is the conservative component, F D 
i j 

is the dissipative com- 

ponent and F R 
i j 

is the stochastic component. The conservative com- 

ponent is given by 

F C i j = 

{
Aω 

C (r i j ) ̂  r i j r i j < r ∗

0 r i j ≥ r ∗
, (3) 

where ̂ r i j = r i j /r i j , r ∗ is the cutoff radius, ω 

C ( r ij ) is often chosen 

to be 1 − r i j /r ∗, rendering the conservative force a soft repulsive 

force; and A characterizes the strength of the force. The dissipative 

force is given by: 

F D i j = −γω 

D (r i j )( ̂  r i j · v i j ) ̂  r i j r i j < r ∗. (4) 

Here, v ij is the relative velocity vector between atom i and atom 

j ; the coefficient γ controls the strength of the dissipative force, 

and ω 

D ( r ij ) characterizes the variation of the dissipative force with 

particle distance. The random force is: 

F R i j = σω 

R (r i j ) θi j ̂  r i j r i j < r ∗, (5) 

where the σ denotes the strength of the random force, ω 

R ( r ij ) 

is the weight function characterizing the variation of the random 

force with particle distance. θ ij is the standard Gaussian noise. Es- 

pañol and Warren [15] have demonstrated that if the fluctuation–

dissipative theorem is to be satisfied, the dissipative and stochastic 

components should be of the following relationships: 

ω 

D (r i j ) = 

[
ω 

R (r i j ) 
]2 

, (6) 

Fig. 1. Schematic of the simulation model. The simulation box is a slender cuboid 

with periodic boundary; the liquid bridge is positioned at the center surrounded by 

another liquid. 

and 

σ 2 = 2 k B T γ , (7) 

where k B is the Boltzmann constant, and T is the temperature. This 

study uses a simple and common form of ω 

D ( r ij ): 

ω 

D (r i j ) = 

{(
1 − r i j /r ∗

)s 
r i j < r ∗

0 r i j ≥ r ∗
, (8) 

where the exponent s is typically set to be 2 or 1/2. The classic 

code LAMMPS [16] is used to perform simulations here. 

Throughout this article we set the particle mass m = 1 , the cut- 

off radius r ∗ = 1 , and the characteristic energy k B T = 1 to fix the 

units of mass, length, energy, and time, therefore most quantities 

in this article have been non-dimensionalized and are used with- 

out explicit units. 

2.2. Simulation model 

The simulation model used here is illustrated in Fig. 1 ; it is a 

periodic liquid bridge surrounded by another liquid. All the bound- 

aries are periodic. In DPD, the flow near a solid wall boundary 

has many parametric dependencies on the wall [17] ; and because 

of the soft potential in the DPD algorithm it is difficult to model 

a no–slip wall condition [18] . It is unnecessary to use solid wall 

boundaries in our simulations since the focus is only on the flow 

field near the breakup point, and the influence of solid bound- 

aries is undesirable. For this reason, the choice was made to use 

periodic boundaries in all three directions of the simulation box. 

The simulation box is full of particles. Those particles belonging 

to the liquid bridge and those belonging to the surrounding liq- 

uid are distinguished by the heterogeneous conservative force co- 

efficient: A := A bb = A ss , A � = A bs , where b has been used to de- 

note the liquid bridge, and s the surrounding liquid. To simplify 

the model, other coefficients are identical: σ := σbb = σss = σbs , 

γ := γbb = γbb = γbs . The standard DPD method can only simulate 

a system of homogeneous temperature; therefore this system does 

not consider thermal flux. The density is also homogeneous, so the 

bridge and the surrounding liquid are immiscible, but of the same 

dynamic properties. It can be seen from Fig. 1 that the initial ra- 

dius of the liquid bridge is R 0 = 6 and the length is L z = 54 . This 

length is determined by ensuring that it is larger than the wave- 

length of the most unstable disturbance whose non–dimensional 

wave number is assumed to be k ′ = kR 0 = 0 . 697 , according to We- 

ber’s formula [1] . To save computation time, at the initial stage a 

disturbance with k ′ = 0 . 697 is imposed on the liquid bridge to start 

the thinning of the liquid bridge. The transverse width of the simu- 

lation box is L x = L y = 30 . Since periodic boundaries are used, there 

may be a finite size effect if the initial radius of the liquid bridge is 

a significant fraction of the simulation box size. To verify that the 

box is large enough, additional simulations were performed with 

a smaller box size ( L x = L y = 25 ) to measure the growth rate of 
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