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a b s t r a c t 

In the present paper, a matrix-free, implicit finite volume lattice Boltzmann method for steady flow on 

unstructured mesh is proposed. The approximate linear system arising from the implicit finite volume 

discretization of lattice Boltzmann equation (LBE) is solved by a novel algorithm, which combines the 

lower-upper symmetric Gauss–Seidel (LU-SGS) and the Jacobi iteration schemes. A remarkable feature 

of the present implicit method is that the storage of the Jacobian matrixes of the convection and col- 

lision terms can be completely eliminated by approximating the Jacobian matrix-solution incremental 

vector product with appropriate numerical flux incremental vector and the numerical increment of col- 

lision term, resulting a matrix-free implicit scheme. The present method is validated by several two- 

dimensional testing cases. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The mesoscopic kinetic based lattice Boltzmann method (LBM), 

as a new CFD way to solve NS equations, has received great at- 

tention from numerical simulation community [1,2] . Since it origi- 

nates and inherits the essential character from the LGA, the stan- 

dard LBM should satisfy the lattice-uniformity and work on uni- 

form grids, which gives a discretization along characteristics of 

the LBE and offers exact results perfectly without any phase and 

amplitude error for the convection term of the LBE [3] . However, 

time and space are coupled in this method, which greatly hampers 

its practical engineering applications involving complex geome- 

tries. To overcome such drawback, the strong couple between time 

and space in the standard LBM should be given up [4] . Therefore, 

the finite-difference LBM (FD-LBM) [5] , the structured grid based 

finite-volume LBM (FD-LBM) [6] and unstructured mesh based FV- 

LBM [7–13] were developing during the past two decades. How- 

ever, these LBE schemes are either explicit or semi-implicit (only 

keeping the collision term implicit), in which the time step is con- 

strained by the Courant-Friedrichs-Lewy (CFL) condition and/or the 

collision relaxation time, which will limits its applications involv- 

ing high-Reynolds-number flows [14] . To release restrictions on the 

time step, several fully implicit LBE schemes exist, such as the im- 
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plicit finite-difference LBM developed by Tölk et al. [14] , Huang, 

Yang and Cai [15] , the implicit Taylor-Galerkin finite-element LBM 

presented by Lee and Lin [3] . However, in these methods, the 

implicit Jacobian matrix has to be computed and stored, which 

may be a major impediment for three dimensional lattice Boltz- 

mann models. Recently, Li and Luo [16] developed an implicit block 

LU-SGS FV-LBM, in which, not the whole, but the block-diagonal 

part of the implicit Jacobian matrix needs to be stored. Therefore, 

block LU-SGS FV-LBM reduces the storage requirement of the im- 

plicit schemes a lot. The block LU-SGS FV-LBM, however, is still 

not matrix-free. For some lattice Boltzmann models such as some 

high order lattice Boltzmann models with huge number of lat- 

tices velocities, the storage requirement of the block LU-SGS FV- 

LBM may still be an important issue. For such lattice Boltzmann 

models, even if the implicit block LU-SGS FV-LBM is used, the 

block-diagonal part of the implicit Jacobian matrix becomes so big 

that storing and manipulating it would cost a lot of memory and 

computer time. Moreover, compared with the Euler/Navier-Stokes 

equations, the LBE has more equations to be solve and more vari- 

ables to be stored. Designing highly efficient and low-memory re- 

quirement implicit schemes is still one of the most significant top- 

ics in Euler/Navier–Stokes equation based CFD [17,18] . However, in 

the LBE based CFD, there are still lack of many very successful im- 

plicit schemes, and thus, there is still a long way to go on devel- 

oping high efficient, low-memory requirement implicit schemes for 

LBE/DBE. In this work, we focus on the development of a matrix- 

free, fully implicit scheme based on the FV-LBM previously de- 

veloped by present author for steady flows [13] . In the present 
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Fig. 1. Face ij and its left hand and right hand cells. 

method, both of the convection and collision terms are implicit and 

linearized and the yielded implicit system is solved by an efficient 

hybrid of the LU-SGS [19] and the Jacobi iteration schemes without 

the storage of the Jacobian matrix. 

The remainder of this paper is organized as follows. In 

Section 2 , to be self-contained, the unstructured cell-centered FV- 

LBM formulation developed in [13] is introduced. In Section 3 , 

the formulation of the present matrix-free implicit scheme is dis- 

cussed in detail, and in Section 4 , numerical examples are provided 

and discussed to validate the present implicit finite-volume lattice 

Boltzmann (FV-LB) scheme. Finally, in Section 5 , conclusions of the 

present paper are given. 

2. Numerical formulation of the FVLBM 

2.1. Space discretization of LBE on unstructured meshes 

The LBE with the collision term can be given as 

∂f 
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where f α , α = 0 , 1 , . . . , N − 1 is the α- th distribution function cor- 

responding to the microscopic velocity ξα . � is the collision matrix 

and N is the total number of microscopic velocities, which depends 

on the specific lattice velocity model. 

The macro density ρ and the momentum vector ρU can be ob- 

tained by the following moments: [
ρ

ρU 

]
= 

N−1 ∑ 

i =0 

[
f i 

ξi f i 

]
. (3) 

Integrating Eq. (1) on cell i , we have the integral form as fol- 

lowing: 

∂ 

∂t 

∫ 
V i 

f dV + 

∮ 
∂ V i 

H dS = 

∫ 
V i 

� dV, (4) 

where V i and ∂V i denote the cell i and its boundaries, respectively, 

and H := J · ˆ n is the convection flux and 

ˆ n is the unit vector out 

normal to the surface element dS . Approximating the volume inte- 

gration by a simple quadrature and the divergence by Guass theo- 

rem in Eq. (4) , we have 

∂f i 
∂t 

V i + 

∑ 

j∈ N(i ) 

H i j S i j = �i V i , (5) 

where the set N(i ) = { j| cell j is the nearest neighbour of cell i } 

and 

ˆ n i j is the unit normal vector of the face ij shared by the left 

hand cell i and the right hand cell j shown in Fig. 1 . Moreover, S ij 
is the area of the face ij . 

Fig. 2. Boundary cell abc and its ghost cell abd . 

In Eq. (5) , the fluxes H ij are calculated by a low-diffusion Roe 

scheme [12] , i.e. , 

H i j = 

1 

2 

[ H (f L ) + H (f R ) − U re f max 
0 ≤l≤(N−1) 

(| ξl · ˆ n i j | )(f R − f L )] , (6) 

with a local characteristic velocity U ref defined as 

U re f = max ( min (k | u i j · ˆ n i j | , 1 . 0) , ν/ � x , 1 . 0 e − 05) , (7) 

and u i j = (u i + u j ) / 2 , where variables (i.e., f L , f R ) on both sides of 

S ij are reconstructed from cell i and cell j by a linear least-square 

method, which is second order accuracy. The details of reconstruc- 

tion can be found in [20] . It should be pointed out that, to be more 

accurate, a quadratic least-square reconstruction method can also 

be used [21] . In Eq. (7) , k ( k ≥ 1) is an adjusting parameter. In 

this work, k = 1 is adopted. In addition, � x = | x ci − x c j | / 2 , where 

x ci and x cj are the center coordinate vectors of cell i and cell j , re- 

spectively. 

2.2. Boundary conditions of the FVLBM 

In the present work, the ghost cell method [20] is used for deal- 

ing with boundary conditions. In this method, the information of 

macro-variables in a ghost cell should be reconstructed by the cor- 

responding boundary conditions. 

In Fig. 2 , there are cell abc and its ghost cell abd on the bound- 

ary ab . The centroid of cell abc and cell abd are denoted by i and 

i ′ , respectively, and the face center of the boundary ab is labeled 

by W ab . 

At t n time, from macro boundary conditions, the macro flow 

variables on the boundary ab can be obtained, but distribution 

functions at W ab are still unknown. To obtain them, the non- 

equilibrium exploration scheme [22] is extended to the present 

unstructured mesh. From this scheme, the non-equilibrium part 

of distribution function at i is taken as a good approximation of 

the counterpart at W ab . Therefore, the distribution functions at W ab 

can be reconstructed as: 

f W ab 
≈ (g W ab 

) + (f i ) 
neq , (8) 

where g W ab 
and ( f i ) 

neq denote the equilibrium distribution function 

vector on the boundary ab and non-equilibrium distribution func- 

tion vector at the cell center of cell i , respectively. Further, the dis- 

tribution functions at i ′ can be determined by the central differ- 

ence scheme: 

f i ′ = 2 . 0 f W ab 
− f i . (9) 

3. Matrix-free implicit time-marching scheme of the FVLBM 

One of the difficulties on developing an implicit scheme for the 

LBE is the nonlinear feature of the collision term � in the LBE. The 
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