
Contents lists available at ScienceDirect

Energy Conversion and Management

journal homepage: www.elsevier.com/locate/enconman

The development of a dynamic single effect, lithium bromide absorption chiller model with enhanced generator fidelity

Corey T. Misenheimer*, Stephen D. Terry

Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA

A R T I C L E I N F O

Keywords:

Lithium

Bromide

Chiller

Steam

Refrigerant

Absorption

ABSTRACT

Single effect, lithium bromide absorption chillers offer the ability to utilize low-pressure steam to produce chilled water for satisfying various comfort cooling needs. Previous attempts have been made to characterize dynamic and steady-state absorption chiller operation. Though these models perform adequately, they are based on hot water driven absorption chillers. Commercially available absorption chillers often can run on both hot water and low-pressure steam. In this paper, the mathematical framework for a dynamic single effect, lithium bromide absorption chiller model capable of using low-pressure steam is presented. The transient thermodynamic FORTRAN model is grounded on mass, energy, and species balances, and builds on prior modeling efforts. Well-known correlations for heat transfer coefficients are used to describe both tube-side and shell-side heat transfer rates in each primary chiller component. To account for the absorption chiller unit receiving steam, a heat transfer model for condensation inside horizontal tubes based on distinct internal condensation flow regimes is incorporated within the generator. This heat transfer model is used with two-phase flow pressure drop equations to establish steam temperature, quality, and pressure along the generator tube bundle. Steam consumption trends are established as a function of fluctuating external conditions. These trends reasonably align with information made available online by the manufacturer, though some deviation does occur at low chiller capacities and cooling water temperatures. Additionally, the transient response of internal and external parameters from a step increase in heat input supplied to the generator mimics results of other dynamic absorption chiller models found throughout literature.

1. Introduction

Electric chillers have been predominantly used to produce chilled water for satisfying cooling demands due in large part to inherent high vapor-compression cycle Coefficients of Performance (COP), flexible unit placement, and fast transients. Fundamentally, compressing a vapor necessitates a large energy input, which electric chillers receive in the form of electricity. Single effect, lithium bromide (LiBr) absorption chillers, on the other hand, harness energy from hot water or lowpressure steam less than 205 kPa (15 psig) and the affinity between an absorbent and a refrigerant to create a chilling effect. Though COPs of single effect absorption chillers are significantly less than those of equivalent size electric chillers, absorption chillers offer a niche in that they can utilize low-pressure steam or hot water that might otherwise be rejected to a low-temperature sink or the environment.

The miniscule electrical power requirement relative to the heat input necessary to drive absorption chillers makes them particularly attractive in waste heat and solar thermal applications, especially given present-day concerns of carbon emissions. This heightened interest has spurred a plethora of analyses predicated on the steady first and second laws of thermodynamics. For example, Pongtornkulpanich et al. [1] applied basic relations to design solar-driven LiBr absorption chillers for buildings. Agyenim et al. [2] conducted a similar study on solardriven LiBr absorption chillers. Chen et al. [3] designed the framework of a LiBr absorption chiller powered via a supercritical CO_2 solar collector. Gomri [4] performed a second law of thermodynamics comparison of single effect and double effect, LiBr absorption chillers. Lastly, Bakhtiari et al. [5] developed a steady-state model of a 14-kW single effect, LiBr absorption chiller. A comparison of the steady-state simulation results and experimental measurements revealed good agreement [5].

While these studies reveal important steady-state absorption chiller trends, understanding part-load and dynamic operation is vital for describing real absorption chiller performance. Large absorption chiller thermal masses coupled with temperature-driven mass transfer and deposition translate into long absorption chiller transients compared to

* Corresponding author.

E-mail address: ctmisenh@ncsu.edu (C.T. Misenheimer).

http://dx.doi.org/10.1016/j.enconman.2017.08.005

Received 14 March 2017; Received in revised form 31 July 2017; Accepted 3 August 2017 0196-8904/ @ 2017 Elsevier Ltd. All rights reserved.

Nomenclature Latin variables		$lpha \Delta$	heat transfer coefficient difference (–)
		$\overline{\emptyset}^2$	two-phase flow multipl
T	to an and the total and the tota	θ	angle from top of tube
T	temperature (°C)	_	tube (Ra)
Μ	mass (kg)	σ	vapor void fraction (-)
c_p	specific heat $(kJ kg^{-1} K^{-1})$	Co.h.o.omim	4a
m	mass flow rate (kg s ^{-1})	Subscrip	ls
t TTA	time (s) (11) (11) (11) (11) (11) (11) (11)		
UA	overall heat transfer coefficient (kW K^{-1})	i	inner tube surface
$\Delta T_{\rm lm}$	log mean temperature difference (°C)	0	outer tube surface
h 	specific enthalpy $(kJ kg^{-1})$	in	inlet
X	water-LiBr mass fraction (%)	out	outlet
H	height between upper and lower shell components (m)	eva	evaporator
P	pressure (kPa)	con	condenser
C_d	discharge coefficient (–)	abs	absorber
/	fluid level in heat exchanger level (m)	gen	generator
5	gravity (m s ^{-2})	w	wall
2	heat transfer rate (kW)	1	liquid
D	diameter (m)	ν	vapor
۲″	thermal resistance $(m^2 K k W^{-1})$	IHX	intermediate heat excha
c	thermal conductivity (kW $m^{-1} K^{-1}$)	strat	stratified
Re	Reynolds number (–)	f	friction
Pr	Prandtl number (–)	lo	liquid only
Nu	Nusselt number (–)	ct	cooling tower
Ga	Galileo number (–)	ch	chilled water
Ia	Jakob number (–)	st	steam
;	axial distance (m)	fo	fouling
5	length (m)	nom	nominal
ı	number of tubes (tubes)	calc	calculated
J	number of (–)	weak	dilute water-LiBr soluti
7	volumetric flow rate $(m^3 s^{-1})$	strong	concentrated water-LiB
c	quality (–)	fi	film
	friction factor (–)	x	cross-sectional
7	mass flux (kg s ^{-1} m ^{-2})	atm	atmospheric
ς ζ _{tt}	Lockhart-Martinelli parameter (–)	wb	wet-bulb
⁻ π ² , <i>c</i> ₂	constants (–)	db	dry-bulb
.1, 02]	correction factor (–)	tot	total
•	radius (m)	met	metal
	gravitational constant (kg m $N^{-1} s^{-2}$)	recirc	recirculation
Sc A	area (m^2)		condenser pan
V	volume (m ³)	pan	-
v NR	average number of tubes per row (tube row^{-1})	avg t	average tube
		t	
NTU	number of transfer units (–)	sol	solution
C1		vo	vapor only
леек И	uriables	ls	superficial
	affectiveness ()	no	nodes
	effectiveness (–)	max	maximum
)	density (kg m^{-3})	min	minimum
	loss coefficient (–)	air	air
L	dynamic viscosity (kg m ^{-1} s ^{-1})		
Γ	film flow rate (kg s ^{-1} m ^{-1})		

	α	heat transfer coefficient (kW $m^{-2} K^{-1}$)
	Δ	difference (–)
	\emptyset^2	two-phase flow multiplier (–)
	θ	angle from top of tube to condensate level in bottom of
		tube (Ra)
	σ	vapor void fraction (–)
	Subscripts	
	i	inner tube surface
	0	outer tube surface
	in	inlet
	out	outlet
n)	eva	evaporator
	con	condenser
	abs	absorber
	gen	generator
	W	wall
	1	liquid
	v	vapor
	IHX	intermediate heat exchanger
	strat	stratified
	f	friction
	lo	liquid only
	ct	cooling tower
	ch	chilled water
	st	steam
	fo	fouling
	nom	nominal
	calc	calculated
	weak	dilute water-LiBr solution mixture
	strong	concentrated water-LiBr solution mixture
	fi	film
	x	cross-sectional
	atm	atmospheric
	wb	wet-bulb
	db	dry-bulb
	tot	total
	met	metal
	recirc	recirculation
	pan	condenser pan
	avg	average
	t	tube
	sol	solution
	vo	vapor only
	ls	superficial
	no	nodes
	max	maximum
	min	minimum
	air	air

their mechanical-driven vapor-compression cycle counterparts; thus, it is advantageous to accurately depict dynamic absorption chiller behavior. However, the mass, temperature, and species transport phenomena within the chiller dictates establishing and solving a highly non-linear system of time-dependent conservation equations at each time-step, which can be computationally expensive.

Several models aim to characterize dynamic single effect, LiBr absorption chiller performance while implementing significant steadystate simplifications. Anand et al. [6] led early absorption chiller research efforts in which they modeled isolated absorption chiller components as well as an entire 10.55-kW chiller in order to gain insight on unit warmup and shutdown procedures. Later, Kohlenbach and Zielger [7] developed an absorption chiller model based on external and internal steady-state enthalpy balances. Despite assuming constant water-LiBr properties, constant overall heat transfer coefficient (HTC) values, and that evaporation and solution enthalpy are constant, simulation results reasonably agreed with experimental data obtained from a 10kW absorption chiller [8]. Borg and Kelly [9] modeled dynamic absorption chiller behavior using a series of interrelated control volumes with lumped heat exchanger masses and experimentally calibrated performance maps. Li et al. [10] simulated dynamic absorption chiller performance in tropical climates using local energy and mass balances Download English Version:

https://daneshyari.com/en/article/5012262

Download Persian Version:

https://daneshyari.com/article/5012262

Daneshyari.com