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a b s t r a c t

Wind farms operate often in the changing wind. The wind condition variations in a wide range of time
scales lead to the variability of wind farms’ power production. This imposes a major challenge to the
power system operators who are facing a higher and higher penetration level of wind power. Thus, wind
farm developers/owners need to take the variability into consideration in the designing/planning stage, in
addition to the conventional main objective of maximizing the expected power output under a fixed wind
distribution. In this study, we first propose a new metric to evaluate the variability of wind power based
on the characteristics of the wind farm and its local wind conditions. Then a series of robustness metrics
are proposed to quantify wind farm’s ability to produce power with high mean value and low variability
under changing wind, considering both short-term and long-term wind condition variations. Based on
these metrics, wind farm layout optimization is performed to maximize the robustness of a real offshore
wind farm in Denmark. The results demonstrate that the robustness metrics are more flexible and com-
plete than the conventional metrics for characterizing wind farm power production, such as mean power
output or wind power variability alone, and it is feasible to design wind farms to produce power with
high mean value and low variability.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the past two decades, wind energy has grown into a mature
and important player in the global energy mixture, especially in
the countries where environmental concerns and sustainability
have received a high priority in their development goals. For exam-
ple, in Denmark, one of the pioneering countries supporting wind
power development, the penetration of wind energy production
in the total electricity consumption has grown from 17% in 2006
to 42% in 2015 [1]. With the higher and higher penetration level
of wind power, the integration challenges faced by the electrical
power system are becoming more and more critical.

From the perspective of power system operators, the power
variability is one of the most crucial challenges brought by the high
wind power penetration. The wind power variability is a direct
consequence of the fluctuating nature of wind and makes the wind
power difficult or generally impossible to dispatch like other con-
ventional powers. This imposes negative impacts on the reliability,
stability, operations, ancillary services and cost of the power
system [2].

The variability of wind power has been the subject of many
studies. Most of these studies focus on the short-term variability
and are mainly based on the study of the wind power time-
series. For example, Katzenstein et al. [3] developed a metric to
quantify the sub-hourly variability cost of individual wind farms
(WFs). Kivilouma et al. [4] studied the characteristics of wind
power variability using real data frommultiple regions and divided
these regions into low, medium and high variability regions
according to the maximum 1 h wind power ramps relative to the
nominal capacity. The metric they used to quantify the short-
term variability consists of values of the ramp duration and the
exceedance level of the ramp magnitude. Boutsika et al. [5] pro-
posed a conditional range metric to quantify the intra-hour wind
power variability and extended it to consider scarce or noisy data
situations in a recent study [6]. Power spectral density has also
been applied in other variability metrics [7,8].

Several methods have also been proposed to mitigate the nega-
tive impacts brought by the short-term variability of wind power,
including: interconnecting WFs [8], optimizing regional spatial dis-
tribution of WFs [9] and optimizing wind turbine (WT) control
strategy [10]. Better wind power forecasting can also contribute
in solving the short-term variability challenges, as suggested in
several recent studies, such as in [11,12].
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In the meanwhile, the long-term variability of wind power has
received less attention, mainly due to the lack of wind power time
series that is long enough for long-term variability analysis.
Recently, Kirchner-Bossi et al. [13] analyzed the long-term vari-
ability of wind power output from a real WT in the period 1871–
2009 for two locations in Spain. They found that the simulated
annual power output from a WT variates largely from year to year.
For example, in one of the sites, its maximal annual value was
644 kW in 1978 while the minimal value was 485 kW in 1911. In
general, predicting the long-term variation of wind power is extre-
mely challenging, as there are no accurate methods to predict the
long-term variation of wind conditions. As pointed out by Watson
[14], general circulation models can predict possible future decadal
fluctuations of wind conditions, but large uncertainties still exist.

All the studies referred above focused on the variability of wind
power, which is of major concern to the power system operators.
However, from the perspective of WF developers/owners, the
annual energy production (AEP) of a WF is far more important than
its variability, since it directly determines the WF’s income. Thus,
maximizing AEP is usually one of the most important objectives
for any WF designer [15].

In the designing/planning stage, AEP of a WF is calculated as an
expected value based on the local wind distribution, which is
derived from a certain period of wind measurement data [16].
Most of the studies on WF layout optimization assumed a fixed
wind distribution and thus didn’t take the long-term variability
into consideration [15]. Although the short-term variability has
been considered for WF operation and control [10], it is seldom
considered in the designing/planning stage. One exception is a
recent study by Song et al. [17]. In this study, they defined a sensi-
tivity index to evaluate the variation of a given WF’s power output
under varying wind directions. After a first stage optimization of
maximizing the mean power output, they then carried out a sec-
ond stage local adjustment of the layout to minimize the sensitiv-
ity of power to the changing wind direction.

Ideally, it is desirable to have the mean value of WF’s power
output as high as possible while keeping its variability under both
short-term and long-term wind variations as low as possible. A lot

of studies in the literature have focused on maximizing the power
output, through both wind farm layout optimization [18,19] and
wind farm control [20,21]. However, to the authors’ knowledge,
there hasn’t been a metric in the literature that can be used to
address both aspects in the same time, i.e., maximizing the mean
power output and minimizing its variability.

In this study, we propose a series of robustness metrics to quan-
tify WF’s ability to produce power with high mean value and low
variability under changing wind. A new metric for the variability
of power is first proposed to quantify the sensitivity of a given
WF’s power output to the possible short-term wind condition vari-
ations, weighted by the local joint distribution of wind speed and
wind direction. Then, the short-term robustness is defined by
WF’s mean power output and its variability of power. The long-
term robustness is computed by modelling the possible long-
term wind condition variations and investigating WF’s power out-
puts under such variating/fluctuating wind conditions. Finally, the
overall robustness is defined as a weighted sum of these two
robustness metrics and a layout optimization study is then carried
out to maximize it for the Horns Rev 1WF using the random search
algorithm [19].

2. Wind farm power output

A WF is a group of WTs located at a site to generate power from
the wind. It can be viewed as a system that transforms the wind
energy into power. At any given moment, the power output of a
WF depends mainly on the characteristics of the inflow wind and
the state of the WF itself.

The most essential characteristics of the inflow wind are wind
speed v and wind direction h at hub height. Although other charac-
teristics such as turbulence intensity, atmospheric stability also
have impacts on the power output, their influence on WF’s long-
term mean performance can be neglected.

In order to calculate the mean power output of a WT or a WF,
we usually model the wind with a certain probability distribution
for wind speed. While different types of distributions are available

Nomenclature

Acronyms
WF wind farm
WT wind turbine
AEP annual energy production
TRI terrain ruggedness index

Symbols
v wind speed [m/s]
h wind direction [�]
P power output [MW]
�v , �h, �P non-dimensionalized wind speed, wind direction and

power [–]
Ak scale factor of Weibull distribution for the kth sector

[m/s]
ck shape factor of Weibull distribution for the kth sector

[–]
f k frequency of occurrence for the kth sector [–]
hk wind direction for the center of the kth sector [�]
Pmean mean power output of the WF [MW]
Prated nameplate capacity of the WF [MW]
v in, vout minimal and maximal wind speeds the WF produces

power [m/s]
PSRI power surface ruggedness index [–]

VoP variability of power [–]

Pref
mean mean power output of the reference WF [MW]

VoPref variability of power of the reference WF [–]
~Ak, ~ck, ~f k variated version of Ak, ck and f k to account for long term

wind variations
nA
k , n

c
k, n

f
k independent random variables to characterize the
parametric variations of Ak, ck and f k

VRA, VRc , VRf maximal variation percentages of Ak, ck and f k [–]
pk probability density function of the k-PDF distribution

[–]
k shape parameter of the k-PDF distribution [–]
ak normalizing parameter of the k-PDF distribution [–]
Nsample number of variated wind condition samples [–]
Pl
mean mean power output of the WF under the lth variated

wind condition sample [MW]
Rshort , Rlong , Roverall short-term, long-term and overall robustness

metrics [–]
a, b, c weighting parameters in Rshort , Rlong and Roverall [–]
Nwt number of WTs in the WF [–]
X, Y vectors of x and y coordinates describing all WTs’

locations [m]
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