
Higher order interfacial effects for elastic waves in one dimensional
phononic crystals via the Lagrange-Hamilton's principle

F. Lebon a, R. Rizzoni b, *

a Aix-Marseille University, CNRS, Centrale Marseille, LMA, Marseille, France
b Department of Engineering, University of Ferrara, Italy

a r t i c l e i n f o

Article history:
Received 10 March 2016
Received in revised form
17 August 2017
Accepted 29 August 2017

Keywords:
Asymptotic analysis
Imperfect interface
Elastodynamics
Phononic crystals
Transfer matrix method

a b s t r a c t

This work proposes new transmission conditions at the interfaces between the layers of a three-
dimensional composite structures. The proposed transmission conditions are obtained by applying the
asymptotic expansion technique in the framework of Lagrange-Hamilton's principle. The proposed
conditions take into account interfacial effects of higher order, thus representing an extension of the
classical zero-thickness interface models. In particular, the (small) thickness of the interface together
with its inertia, stiffness and anisotropy are accounted for. The effect of the transmission conditions on
the band structure of BlocheFloquet waves propagating in a one dimensional phononic crystal is dis-
cussed based on numerical results.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Phononic crystals are composites with a periodic structure
made of materials with different elastic constants and densities. In
these composites, elastic waves with frequencies within a specific
range (the phononic bandgap) are not allowed to propagate.
Therefore, phononic crystals present innovative filtering properties
and offer possibilities for controlling sound and heat propagation
(Kushwaha et al., 1993; Jensen, 2003; Ghazaryan and Piliposyan,
2011; Maldovan, 2013).

Many authors have studied the effect of material properties on
phononic band gaps (see (Vasseur et al., 2001; Wu et al., 2004;
Maldovan, 2013; Chen et al., 2014) and references therein) and
found that microstructured materials are able to control sound,
whereas to control heat, nanostructures are generally required. For
a fine-scaled material with a large ratio of interfacial region to the
bulk, the influence of surface characteristics can be substantial and
it is thus fundamental to propose reliable and efficient models able
to account for interfacial effects.

In the literature, a very large number of interface model have
been developed (see, for example (Challamel and Girhammar, 2011;

Benveniste and Miloh, 2001; Hashin, 2002; Klarbring, 1991; B€ovik,
1994; Lebon and Zaittouni, 2010; Nairn, 2007; Benveniste, 2013; Li
et al., 2015)). We can classify these models into two large families:
phenomenological models, essentially built from experimental
data, and deductivemodels based onmicro-mechanical analyses. In
the present paper, we deal with the second family.

The application of asymptotic techniques to obtain models of
interfaces is now well established (Benveniste, 2006; Krasuki and
Lenci, 2000; Lebon et al., 1997; Rizzoni and Lebon, 2012, 2013;
Rizzoni et al., 2014; Serpilli, 2015; Serpilli and Lenci, 2016). The
idea behind this application is the replacement of a thin, elastic,
anisotropic interphase by a proper interfacemodel; the equivalence
between the two models is established by studying the asymptotic
behavior of the interphase as its thickness becomes smaller and
smaller. In Section 2, the problem of a composite made of three
deformable solids (two adherents and a thin interphase) perfectly
bonded together is introduced in the framework of elastodynamics.
The Lagrangian problem is introduced and expanded with respect
to the small parameter (the interphase thickness). In Section 3, four
sub-problems are studied, allowing us to derive the interfacial
displacement and traction jump relations at each level of expan-
sion. In particular, higher order levels of the expansion are taken
into account.

In Section 4, the jump relations are reformulated into a general
elastic imperfect interface model in such a way that they take
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simpler and compact but equivalent forms, particularly convenient
for later use. It is also shown that the present formulation unifies
and extends four widely used interface models, the perfect inter-
face, the mass interface, the spring interface and the spring-mass
interface, thus representing an enrichment of the classical inter-
face models due to high order interfacial effects. Notably, the
presence of first order derivates of the displacement and stress
vector fields make the proposed imperfect interface model
nonlocal in character.

In Section 5, the imperfect interface model is applied to estimate
the interfacial effects of the periodic structure on bandgaps of a
one-dimensional phononic crystal with imperfect contacts be-
tween the two constituent layers. The standard transfer matrix
approach is employed (Lekner, 1994; Rokhlin and Wana, 1991;
Rokhlin and Wang, 1992). In particular, an additional interlayer
matrix is introduced, taking into account the imperfect contact. The
dispersion equation is solved numerically and the dispersion curves
are shown in the Brillouin zone. The band gaps of the phononic
crystal with imperfect contact are compared with those obtained
with perfect contact. In particular, the effects of the small thickness
of the imperfect interface, of its inertia and stiffness on the band
structure of the laminated phononic crystal are discussed on the
basis of the numerical results.

2. Statement of the problem

In the following a composite body made of three deformable
solids, two elastic adherents and a thin elastic adhesive, is
considered (cf. Fig. 1). At the initial time t1; the composite occupies
the bounded domain Uε depending on a small parameter εwhich is
the constant thickness of the adhesive. An orthonormal Cartesian
basis ðO; e1; e2; e3Þ is introduced and x ¼ ðx1; x2; x3Þ is taken to
denote the position of a particle. The adhesive occupies the initial

domain Bε, defined by Bε ¼
n�

x1; x2; x3Þ2Uε :
���x3���< ε

2

o
. We take

vBε to denote the boundary of Bε, which is supposed to be suffi-
ciently smooth. Thus, the origin of the Cartesian basis lies at the
center of the adhesive midplane and the x3� axis runs perpen-
dicular to the open bounded set S ¼ fðx1; x2; x3Þ2Uε : x3 ¼ 0g;
which in the following will be called the interface. The adherents
occupy respectively the initial domains Uε

± defined by

Uε

± ¼
n�

x1; x2; x3Þ2U : ±x3 > ε

2

o
. We take vUε

± to denote the

boundary of Uε

±, which is supposed to be sufficiently smooth. The
two-dimensional domains Sε± are taken to denote the interfaces
between the adhesive and the adherents,

Sε± ¼
n�

x1; x2; x3Þ2U : x3 ¼ ±ε

2

o
. On a part S±g of the boundary

vUε=Sε±, an external time-dependent load g±ðt; xÞ; t2ðt1; t2Þ; is
applied, and on a part S±u of vUε=Sε± such that S±g ∩S

±
u ¼ Ø, the

displacement is imposed to vanish. Moreover, it is assumed that
S±u∩Bε ¼ Ø, S±g ∩Bε ¼ Ø and S±u∪S±g ∪Sε± ¼ vUε

±. We take Sεl to denote
vBε=Sε±. The part of the boundary Sεl is force free. A time-dependent

body force f±ðt; xÞ; t2ðt1; t2Þ; is applied in Uε

±. Let g± and f± be
assumed regular functions on ½t1; t2� � Sg and ½t1; t2� � Uε

±; respec-
tively. In the following, uεðt; xÞ is taken to denote the displacement
field, sεðt; xÞ the Cauchy stress tensor and eðuεÞ the strain tensor.
Under the small strain hypothesis we have eijðuεÞ ¼ 1

2 ðuεi;j þ uεj;iÞ,
where the comma is the partial derivative.

The two adherents and the adhesive are supposed to be elastic,
thus

sε ¼ a±eðuεÞ in Uε

±; (1)

sε ¼ bεeðuεÞ in Bε: (2)

The elasticity tensors a± and bε have the usual properties of
symmetry, Sijhk ¼ Shkij ¼ Sjikh, and of positivity, i.e. there exists a>0
such that

Sijhkeijehk >aeijeij; eij ¼ eji: (3)

We take r± and zε to denote the strictly positive volumetric mass
densities in the adherents and in the adhesive, respectively, and ½½��
to denote the jump along Sε±. The equations governing the motion
of the composite structure are written as follows:8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

sεij;j þ f ±i ¼ r±€u
ε

i in ½t1; t2� � Uε

±;

sεijnj ¼ g±i on ½t1; t2� � S±g ;
sεij;j ¼ zε€uε in ½t1; t2� � Bε;��
uεi
�� ¼ 0 on ½t1; t2� � Sε±;

uεi ¼ 0 on ½t1; t2� � S±u ;
sεij ¼ a±ijhkehkðuεÞ in ½t1; t2� � Uε

±;

sεij ¼ bεijhkehkðuεÞ in ½t1; t2� � Bε;
uεi ¼ Uε

i ; for t ¼ t1; in Uε;
_uεi ¼ vεi ; for t ¼ t1; in Uε;

(4)

where _ui and €ui are the first and second derivatives in time of ui;
respectively, and Ui (resp. vi) are the initial displacement (resp.
velocity) data. It is remarked here, that (4) implies that ½½sεi �� ¼ 0 on
½t1; t2� � Sε±. Note that bεijhk and zε can depend on ε. If

f ±2L2ð½t1; t2�;H1ðUε;R3ÞÞ and g±2L2ð½t1; t2�;H1ðS±g ;R3ÞÞ, then

problem (4) has an unique solution in H1ð½t1; t2�;H1ðUε;R3ÞÞ
(Ciarlet, 1976; Lions and Magenes, 1968). In the following, we take
kk to denote the usual euclidian norm in R3. The Lagrangian is
introduced

L ðuεÞ ¼ Tεð _uεÞ � EεðuεÞ; (5)

where Tε is the total kinetic energy, sum of the kinetic energies of
the adherents and the adhesive,

Tεð _uεÞ ¼ Tεþð _uεÞ þ Tε�ð _uεÞ þ TεBð _uεÞ;

Tε

±ð _uεÞ ¼ 1
2

Z
Uε

±

r±jj _uεjj2dx;

TεBð _uεÞ ¼ 1
2

Z
Bε

zεk _uεk2dx;

(6)

and Eε is the total potential energy

Fig. 1. Geometry of the composite. Initial reference configuration made of two ad-
herents in perfect contact with a thin adhesive (a); corresponding rescaled configu-
ration with an adhesive of unit thickness (b); limit configuration obtained as the
thickness ε of the adhesive goes to zero (c).
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