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a b s t r a c t 

The contribution of local volumetric change due to the diffusion/migration of solute atoms to viscoelastic de- 

formation is incorporated in the theory of linear viscoelasticity, following the elastic theory of diffusion-induced 

stress. Three-dimensional constitutive relationship in differential form for diffusion-induced stress in linear vis- 

coelastic materials is proposed. Using the correspondence principle between linear viscoelasticity and linear 

elasticity and the results from the diffusion-induced bending of elastic beams, the radii of curvature of the cen- 

troidal plane of viscoelastic beams of single layer and bilayer with top layer being viscoelastic in the transform 

domain are obtained. For viscoelastic beams of single layer, closed-form solution of the radius of curvature of 

the centroidal plane is derived, and the radius of curvature is inversely proportional to the diffusion moment 

created by non-uniform distribution of solute atoms. For the condition of constant concentration on free surface, 

there is overshoot behavior; for the condition of constant flux on free surface, there is no overshoot behavior. 

For viscoelastic beams of bilayer with top layer being the Maxwell-type standard material, the numerical results 

show the presence of the overshoot behavior for a very compliant elastic layer under the condition of constant 

concentration on free surface, and there is no overshoot behavior under the condition of constant flux on free 

surface. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The progress in the micro- and nanomanufacturing technologies has 
made it possible to manufacture cantilever-based structures for sensing 
techniques [1–5] . Similar structures, beam-based structures, have also 
been used to analyze the change of surface stress due to electrochemi- 
cal charging-discharging [6–10] and the stresses induced by mass trans- 
port [7,11–15] . In the heart of the cantilever-based sensing techniques 
is the change of surface stress associated with adsorption of molecules 
on “active ” surface/coating and/or the volumetric strain associated with 
phase change and/or mass transport, which can cause the deflection of 
the cantilever-based structures. 

Currently, the deflection analysis of cantilever-based structures 
and beam-based structures has mainly based on the theory of elastic 
beams with the incorporation of surface stress and the strain due to 
swelling/shrinking of coated materials. It is known that polymer coat- 
ings have been used in cantilever-based chemical sensors [9,12,15] . The 
theory of elastic beams likely cannot reveal the temporal evolution of 
the beam deflection with a coating of polymer. For example, Pei and 
Inganäs [13] used the theory of linear elasticity to model the deflection 
of a bipolymer strip induced by cation insertion and salt draining, and 
stated that their numerical results may not compare with the experimen- 
tal results of the increasing part of the bipolymer strip deflection. They 
suggested that this is likely due to the salt draining occurring immedi- 
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ately after the reduction. Observing an overshoot that slowly decreases 
to the steady-state value for the absorption of a chemical analyte into a 
polymer coating, Wenzel et al. [16] developed a model of absorption- 
induced static bending of a microcantilever coated with a viscoelastic 
material, and were able to demonstrate the overshoot behavior from 

their model. It is worth mentioning that Yang and Li [17] used the elas- 
tic theory of diffusion-induced stress to analyze the cantilever-based hy- 
drogen sensor, and their results showed the overshoot behavior. Yang 
[18] used the theory of surface rheology to analyze the effect of a surface 
viscous film on the vibration of an elastic microcantilever. Approximat- 
ing uniform temperature in a bilayer system, Hsueh et al. [19] used the 
correspondence principle to analyze the stress evolution in the bilayer 
consisting of Maxwell materials due to thermal and/or lattice mismatch. 
They did not analyze the temporal evolution of the radius of curvature 
of the viscoelastic bilayer system. There are little studies focusing on 
the diffusion-induced bending of cantilever-based structures consisting 
of viscoelastic materials. 

It is known that polymer coatings have been widely used in 
cantilever-based sensing structures and conducting polymer as well as 
porous materials has been used in energy storage such as supercapaci- 
tors [20–24] . There exists local volumetric change associated with mass 
transport and phase transform in polymer and porous materials, and 
it needs to carefully study the effect of the volumetric strain on the 
structural sensetivity for the applications in sensing technology and en- 
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Fig. 1. Schematic diagram of the diffusion/migration of atoms/molecules into an elastic 

beam of single layer. 

ergy storage. Considering the viscoelastic characteristcs of polymer and 
porou materials associated with fluid-structure interaction, the effect of 
the volumetric strain due to mass transport on the bending of viscoelas- 
tic beams is analyzed. The focuse is on the temporal evolution of the 
beam deflection. The theory of diffusion-induced stress in linear elastic- 
ity is extended to linear viscoelasticity. 

2. Analyses of diffusion-induced bending of elastic beams 

In the framework of linear elasticity, the constitutive relationship de- 
scribing the diffusion-induced deformation of elastic materials is [25] 

𝜺 = 

1 
𝐸 

[(1 + 𝜈) 𝝈 − 𝜈tr ( 𝝈) 𝐈 ] + 

𝑐Ω
3 

𝐈 (1) 

where 𝜺 is strain tensor, 𝝈 is stress tensor, I is unit tensor, Ω is the molar 
volume of solute atoms (m 

3 /mol), c is the concentration (mol/m 

3 ) of 
diffusing component (solute atoms), and E and 𝜈 are Young’s modulus 
and Poisson’s ratio of the material, respectively. The molar volume of 
Ω is assumed constant, independent of c . The relationship between the 
strain tensor and the displacement vector ( u ) is 

𝜺 = 

1 
2 
( ∇ 𝒖 + 𝒖 ∇ ) (2) 

Fig. 1 shows an elastic beam with the dimensions in the y - and z- 
directions much smaller than that in the x- direction. Eq. (1) reduces to 

𝜀 𝑥𝑥 = 

1 
𝐸 

𝜎𝑥𝑥 + 

𝑐Ω
3 

(3) 

for the diffusion-induced bending of the elastic beam. 
Elastic beam of single layer 
For completeness, the diffusion-induced bending of an elastic beam 

of Young’s modulus of E 1 with the dimensions in the y - and z- directions 
much smaller than that in the x- direction is first briefly analyzed. For 
detailed derivation, see the work by Yang and Li [17] . According to the 
Bernoulli–Euler assumption that planar sections perpendicular to the 
axis remain planar after bending, one can express axial displacement 
( x- direction), u ( x, z ), as 

𝑢 ( 𝑥, 𝑧 ) = 𝑓 0 ( 𝑥 ) + 𝑧 𝑓 1 ( 𝑥 ) (4) 

From Eq. (4) , the axial normal strain, 𝜀 xx , and stress, 𝜎xx , can calcu- 
lated as 

𝜀 𝑥𝑥 ( 𝑥, 𝑧 ) = 𝑓 ′0 ( 𝑥 ) + 𝑧 𝑓 ′1 ( 𝑥 ) (5) 

𝜎𝑥𝑥 ( 𝑥, 𝑧 ) = 𝐸 1 

[
𝑓 ′0 ( 𝑥 ) + 𝑧 𝑓 ′1 ( 𝑥 ) − 

1 
3 
𝑐Ω

]
(6) 

Here, f 0 ( x ) and f 1 ( x ) are to be determined from the equilibrium equa- 
tions, and the primes denote differentiation with respect to x . 

Assuming that the characteristic time for diffusion/migration of so- 
lute atoms into the elastic beam is much larger than the characteristic 
time for the propagation of elastic wave, one can approximate the de- 
flection of the elastic beam as quasi-static. Under the condition of quasi- 
static state, the equilibrium equations are 

∫𝐴 1 

𝜎𝑥𝑥 ( 𝑥, 𝑧 ) 𝑑𝐴 = 0 and ∫𝐴 1 

𝑧 𝜎𝑥𝑥 ( 𝑥, 𝑧 ) 𝑑𝐴 = 0 (7) 

Fig. 2. Schematic diagram of the diffusion/migration of atoms/molecules into an elastic 

beam of bilayer. 

where the integrations must cover the entire cross-sectional area of A 1 . 
Substituting Eq. (6) into Eq. (7) and using the condition of ∫

𝐴 1 
𝑧𝑑𝐴 = 

0 (i.e. the centroidal plane is the middle plane of the elastic beam) yield 

𝑓 ′0 ( 𝑥 ) = 

1 
3 

< 𝑐 > Ω and 𝑓 ′1 ( 𝑥 ) = 

1 
3 𝐼 1 

𝑀 𝑐 Ω (8) 

with 

< 𝑐 > = 

1 
𝐴 1 ∫𝐴 1 

𝑐𝑑𝐴 , 𝑀 𝑐 = ∫𝐴 1 

𝑐𝑧𝑑𝐴 , and 𝐼 1 = ∫𝐴 1 

𝑧 2 𝑑𝐴 (9) 

Here, M c is defined as diffusion moment. Substituting Eq. (8) into 
Eqs. (5) and (6) , one obtains the strain and stress in the elastic beam as 

𝜀 𝑥𝑥 ( 𝑥, 𝑧 ) = 

1 
3 

< 𝑐 > Ω + 

1 
3 𝐼 1 

𝑧 𝑀 𝑐 Ω (10) 

𝜎𝑥𝑥 ( 𝑥, 𝑧 ) = 

𝐸 1 Ω
3 

[ 
( < 𝑐 > − 𝑐) + 

𝑧 

𝐼 1 
𝑀 𝑐 

] 
(11) 

which gives the radius of curvature, 𝜌, of the centroidal plane as 

1 
𝜌
= − 

𝜕 𝜀 𝑥𝑥 ( 𝑥, 𝑧 ) 
𝜕𝑧 

= − 

1 
3 𝐼 1 

𝑀 𝑐 Ω (12) 

Elastic beam of bilayer 
Consider an elastic beam consisting of two elastic layers with solute 

atoms only being able to migrate/diffuse into top layer, as shown in 
Fig. 2 . There is perfect bonding between top layer and bottom layer, 
and there is no slip between these two layers. The elastic moduli are E 1 
and E 2 for the top layer and the bottom layer, respectively. 

Similar to the analysis of the bending of the elastic beam of single 
layer, the axial displacement ( x- direction), u ( x, z ), can be expressed as 

𝑢 ( 𝑥, 𝑧 ) = 𝑓 0 ( 𝑥 ) + 𝑧 𝑓 1 ( 𝑥 ) (13) 

in which the x -axis ( z = 0) is located in the interface between the top 
layer and the bottom layer. The axial strains of each layer can then be 
calculated as 

𝜎𝑥𝑥 1 
𝐸 1 

= 𝜀 𝑥𝑥 1 − 

1 
3 
𝑐Ω = 𝑓 ′0 ( 𝑥 ) + 𝑧𝑓 ′1 ( 𝑥 ) − 

1 
3 
𝑐Ω for top layer (14) 

𝜎𝑥𝑥 

𝐸 2 
= 𝜀 𝑥𝑥 2 = 𝑓 ′0 ( 𝑥 ) + 𝑧𝑓 ′1 ( 𝑥 ) for bottom layer (15) 

Without the action of external loading, the equilibrium equations 
give 

∫𝐴 1 

𝜎𝑥 𝑥 1 
( 𝑥, 𝑧 ) 𝑑𝐴 + ∫𝐴 2 

𝜎𝑥 𝑥 2 
( 𝑥, 𝑧 ) 𝑑𝐴 = 0 (16) 

∫𝐴 1 

𝑧 𝜎𝑥 𝑥 1 
( 𝑥, 𝑧 ) 𝑑𝐴 + ∫𝐴 2 

𝑧 𝜎𝑥 𝑥 2 
( 𝑥, 𝑧 ) 𝑑𝐴 = 0 (17) 

Here, A 1 and A 2 are the cross-sectional areas of the top layer and 
the bottom layer, respectively. Substituting Eqs. (14) and (15) into 
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