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A B S T R A C T

Since the excellent performance of the discrete singular convolution (DSC) for high order frequency analysis has
not been demonstrated for rectangular plates with free edges and corners thus far, this paper proposes a novel
approach in applying the DSC for vibration analysis of beams and rectangular plates with arbitrary boundary
conditions. The Taylor series expansion method is used to apply the boundary conditions. The existing difficulty
encountered at plate corner points is overcome by the proposed method. The essential idea of the novel method
is that two Taylor series expansions with different orders are used to eliminate the fictitious points outside the
physical domain. Various beam and rectangular plate problems are solved by the proposed DSC and the results
are compared with exact solutions, finite element data and results obtained by the differential quadrature
method (DQM) using much higher number of grid points. It is demonstrated that the Taylor series expansion
method to apply the boundary conditions is general and accurate. It is also found that the performance of the
proposed DSC is excellent and independent of boundary conditions.

1. Introduction

Beams and plates are the basic structural elements in engineering
structures and their static, buckling and vibration behaviors are of
important to the designers. Therefore, beams and plates have been
received great attention. Since analytical solutions are only available
for certain simple cases [1], numerical method such as the finite
element method (FEM) is the major approach in engineering practice.

However, certain limitations exist in the conventional FEM. Thus
other computationally efficient numerical methods are being sought.
The research into the development of new methods for numerical
solution of problems in engineering and physical sciences remains
motivated by the needs of modern technology [2]. For the vibration
analysis of beams and plates, the discrete singular convolution (DSC),
proposed by Wei [3], is a very promising approach [4,5]. The
mathematical foundation of the DSC is the theory of distributions and
the theory of wavelets. The DSC algorithm has been realized in both
collocation and Galerkin formulations [6,7]. It has been shown that the
method can yield not only accurate lower mode frequencies but also
accurate higher mode frequencies, and thus is the most efficient method
among many others for analyzing the challenge problems of beams and
plates vibrating at high modes [7–12].

Since the DSC was proposed by Wei in 1999, the DSC has been

successfully used to analyze the static, vibration and buckling of beams,
plates and shells. To name a few, the DSC is used to analyze various
beam problems [13–18], plate problems [6,7,19–27], shell problems
[28–31], wave propagation in rod [32] and non-linear buckling of drill
string [33].

It is an easy task to implement boundary conditions by weak form
methods, such as the finite element method and DSC-Ritz element
method [26]. However, implementation of the boundary conditions by
strong form methods, such as the DSC, is not an easy but an important
task. The well-known methods are the method of symmetric extension
used to apply the fixed boundary conditions and the method of anti-
symmetric extension used to apply the simply supported boundary
conditions [7]. However, these two methods cannot be used to apply
the free boundary conditions. Therefore, most of early applications of
the DSC considered only the boundary conditions of the clamped,
simply supported and their combinations. The iteratively matched
boundary (IMB) method, which applies boundary conditions at a free
end repeatedly, can yield accurate lower mode frequencies for beams
with free ends [14]. The Taylor series expansion method [11], can yield
accurate lower mode as well as higher mode frequencies for beams with
free ends [16–18]. However, the solution accuracy losses somehow
when the method is used for rectangular plates with free corners. The
matched interface and boundary (MIB) method is generalized for the
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free vibration analysis of rectangular plates [22]. A set of new MIB
schemes are proposed and the boundary conditions are rigorously
enforced. However, the lower mode frequencies seem also not very
accurate. Besides its performance on higher mode frequency has not
been demonstrated.

The objectives of this investigation are two folds. One is to provide a
general and accurate way to apply any kind of boundary conditions by
using the DSC. The other is to propose a simple way to overcome the
difficulty existing in early research by the DSC. Free vibration of beams
and rectangular plates with free boundaries are solved by the proposed
DSC. Both lower mode and higher mode frequencies are investigated.
For verifications, results are compared with exact solutions, finite
element data and results obtained by the differential quadrature
method (DQM) with much higher number of grid points. Based on
the results reported herein, some conclusions are drawn.

2. Theories of slender beams and thin rectangular plates

2.1. Free vibration of slender beams

For an Euler–Bernoulli beam with length L, width b, height h and
cross-sectional area A, the governing equation for free vibration
analysis is
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where x is the Cartesian coordinate in the middle plane of the beam,
w(x) is the deflection, I bh= /123 is the flexural rigidity, E is the modulus
of elasticity, ρ is the mass density, and ω is the circular frequency.

The equations of three classical boundary conditions considered are
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2.2. Free vibration of isotropic thin rectangular plates

For an isotropic thin rectangular plate with length a, width b and
thickness h, the governing equation for free vibration analysis is given
by
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where x and y are the Cartesian coordinates in the middle plane of the
plate, w x y( , ) is the deflection, ρ is the mass density, D Eh ν= /12(1 − )3 2

is the flexural rigidity, E and ν are the modulus of elasticity and
Poisson's ratio, and ω is the circular frequency, respectively.

The equations of three classical boundary conditions considered are

(1) Clamped edge (C)
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(2) Simply supported edge (S)
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(3) Free edge (F)
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At a free corner point, one more condition should be satisfied,
namely,

R D ν w
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3. DSC algorithm and solution procedures

3.1. DSC algorithm

For completeness consideration, the discrete singular convolution
(DSC) is briefly described herein. In the DSC, the function w x( ) and its
nth order derivative with respect to x are approximated via a discretized
convolution as [4,7],
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where xk are the uniformly distributed grid points, superscripts (n)
denote the nth order derivative with respect to x, M2 + 1 is called the
computational bandwidth, δ x x( − )σ Δ k, is a collective symbol for the
delta kernels of Dirichlet type and its nth order derivative with respect
to x is given by
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There are several delta kernels of Dirichlet type available. The most
widely used two kernels are the regularized Shannon kernel (DSC-RSK)
and the non-regularized Lagrange's delta sequence kernel (DSC-LK).
The regularized Shannon kernel is defined as [4]
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where σ is a controllable parameter, Δ x x= −k k−1 is the spacing
between two grid points.

The non-regularized Lagrange's delta sequence kernel is given by

δ x x L x x β x β M( − ) = ( − ) for − ≤ ≤
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where β L≤ c (Lc equals to the length of beam L, plate length a or plate
width b), and L x( )M k, is the Lagrange interpolation defined by [7]
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