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A B S T R A C T

The present work is inspired by the fact that tension enforced by external force applied directly to the outermost
layers of a (usually incommensurate) multilayer graphene sheet cannot be effectively transferred to all inner
layers due to interlayer sliding, and therefore tension force in inner layers can be much lower than the tension
force in the outermost layers. In this paper, a three-beam model is presented to study vibration of a multilayer
graphene sheet under layerwise tension forces. In contrast to the commonly used single-beam model which
assumes that tension in all layers of a multilayer graphene sheet are identical, the present model treats the top
and bottom layers as two beams, and all other inner layers together as another beam which has different tension
force than the top and bottom beams. Our results indicate that actual tensile stress/strain in the outmost
singlelayers of a multilayer graphene sheet can be much (for instance, almost ten times, for specific examples
discussed here) higher than that estimated by the widely used single-beam model, and the latter can badly
underestimate actual tensile stress/strain of multilayer graphene resonators. In addition, at least for typical
examples discussed here, the present model shows that vibrational frequencies of a multilayer graphene sheet
are largely determined by the total tension, and the distribution of the total tension over different layers does not
make a huge impact to vibrational frequencies of multilayer graphene resonators. Based on this conclusion, an
explicit formula is given for resonant frequencies of multilayer graphene sheets under layerwise tension forces
although the actual maximum tension depends on how total tension is distributed over all layers.

1. Introduction

Graphene [1] has attracted widespread attention since its discovery.
Despite being only one atom thick, graphene sheets (GSs) exhibit
superior physical, electronic and mechanical properties [2–4], such as
high flexibility, high stiffness, low mass, high electrical and thermal
conductivity. Recently, mechanical resonance of graphene has been
studied with various experimental methods, such as optical interfero-
metry [5–7], or electrostatical imaging by scanning force micro-
scopy [8]. Vibration of suspended GSs is measured at room temperature
by Bunch et al. [5]. For total 33 GSs of thickness ranging from
singlelayer to 75 nm, as summarized in Fig. 3 of [5], the measured
fundamental frequency varies from 1 MHz to 170 MHz. In their
analysis, classical single-beam model was used to simulate vibration
of doubly clamped or cantilever GSs based on an assumption that the
measured GSs are under tension, which dominates the fundamental
resonant frequency. Similar phenomena were observed by
Takamuraet al. [7]. For example, for a trilayer graphene of thickness
1 nm and with length 7.6 µm and width 3.7 µm, experimental funda-
mental frequency [7] is 7.52 MHz. If the classical single-beam formula

with zero tension force is used, a value of 0.37 MHz would be obtained,
which is much lower than their measured value. This example clearly
indicates that tension force plays a dominant role in vibration of
stretched GSs. Frank et al. [9] measured effective spring constant of
stacks of GSs suspended over photolithographically defined trenches in
silicon dioxide by using an atomic force microscope. When their data
[9] are fitted to the doubly clamped classical single-beam model under
tension, they extracted a Young's modulus of 0.5TPa and a total tension
force on the order of 10−7N. Traversi et al. [10] measured the
mechanical characterization of suspended GSs by nanoindentation with
an atomic force microscopy tip. Fitting the doubly clamped classical
single-beam model to their [10] experiment data, they obtained a built-
in tension of 12nN and a Young's modulus of 0.43TPa. All of the
mentioned previous works have well confirmed the validity and
accuracy of the classical elastic beam model (without so-called “non-
local effects”) for tension-dominated vibration of GSs under various end
conditions.

Previous researches on vibration of multilayer graphene sheets
(MLGSs) are all based on the single elastic beam model which assumed
that tension forces in all layers of a MLGS are identical. In reality,
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multilayer graphene grown by various available techniques are inter-
layer misoriented in most cases, called "incommensurate", with vanish-
ingly weak interlayer in-plane coupling. As a consequence, it is well-
known [25–28] that the incommensurability leads to ultralow inter-
layer (both static and kinetic) friction. Typically, for example, it has
been repeatedly reported in literature that the interlayer friction
coefficient for incommensurate multilayer garphene is on the order of
0.001 [25]. Therefore, due to interlayer sliding [11–13,25–28], it is
expected that tension enforced by external force applied to the outer-
most top and bottom layers cannot be effectively transferred to all inner
layers, and therefore tension force in all inner layers can be much lower
than the tension in the top and bottom layers. This crucial feature of
stretched MLGSs has not been addressed in existing literature. It is this
key shortcoming of all previous related models that motivates the
present work. Unlike the widely used single-beam model which
assumes that tension forces in all layers of a MLGS are identical, the
present work aims to study free vibration of a MLGS under layerwise
tension forces.

In this paper, a simple three-beam model is presented for vibration
of a MLGS. A MLGS is modeled as a simplified three-beam system in
which the top and bottom layers are modeled as two individual beams,
and all other un-tensioned or less-tensioned inner layers are modeled as
another beam, and the three beams are coupled through van der Waals
interaction between any two adjacent beams. In particular, the inner
beam has a different tension than the top and bottom beams. The major
goal of the present work is to examine the effect of layerwise tension
forces on vibrational frequencies of a MLGS. For our goal, the simple
classical beam model is appropriate to highlight the role of layerwise
tension forces in vibration of a multilayer graphene sheet.

2. The present model

Deflection w(x,t) of an elastic beam under transverse distributed
pressure p(x) and axial force F is governed by
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where x is the axial coordinate, t is time, EI and A are the bending
rigidity and the cross section area of the beam, and ρ is the mass density
per unit volume.

The present paper studies linearized small-amplitude vibration of
MLGS. In this paper, a MLGS is modeled as a simplified three-beam
system in which the top and bottom layers are modeled as two beams,
and all other inner layers are modeled as another single beam, and the
three beams are coupled through van der Waals interaction between
any two adjacent beams. Thus, the above beam model (1) is applied to
the three beams, respectively, in which p(x) represents the van der
Waals force between adjacent beams, F represents the tension force. In
doing so, the governing equation for free vibration of a MLGS can be
given as follows
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where the subscript 1, 2 and 3 denote the top layer, the inner layers,
and the bottom layer, respectively, and b is the width of the beams, c is
the van der Waals interaction coefficient per unit area between two
adjacent beams and can be expressed as [14]:

c d= ( = 1.42 × 10 cm)

=99 GPa/nm
d

320 × erg / cm
0.16

−82

2

(3)

Here, it should be stated that, to justify the efficiency of the present

three-beam model, a comparison between the present three-beam
model and more complicated four-beam or five-beam model is made
in Table 1 and Table 2. It is shown in Tables 1, 2 that no meaningful
difference exists in the results given by the present three-beam model
and more complicated multiple-beam models. In other words, in spite
of its mathematical simplicity, the present simple three-beam model
can catch major features of layerwise tension forces in vibration of a
MLGS.

3. Solution procedure

For free vibration, the general solution of 3 coupled fourth-order Eq.
(2) is a linear combination of 12 independent particular solutions of the
homogeneous equations. The particular solutions for the displacements
of the top layer, the inner layers and the bottom layer can be
represented by

w x t Y x e B e j( , ) = ( ) = , ( = 1, 2, 3)j j
iωt

j
λx iωt+

(4)

where i = −1 , ω is resonant frequency of the MLGS, and Bj are
unknown coefficients. Substituting expressions (4) into Eq. (2), yields a
matrix equation
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The associated amplitude ratio of the three beam model can be
determined as
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Accordingly, the existence condition for a nonzero solution Bj
(j=1,2,3) of Eq. (5) leads to a twelve order algebraic equation for the
eigenvalue λ, which determine 12 eigen-roots. Thus, the general
solution of (2) is a linear combination of the 12 particular solutions
with 12 arbitrary coefficients. Substituting the general solution to total
12 end conditions of the 3 elastic beams leads to 12 homogeneous
equations for the 12 non-zero coefficients. The existence condition for
the 12 non-zero coefficients leads to the condition to determine the

Table 1
Distribution of the tension force of a five-layered GS given by different multiple-beam
models.

Fi (tension in ith layer) F1 F2 F3 F4 F5

Three-beam model F1 0.5 F1 F1 − −
Four-beam model F1 0.3 F1 0.2 F1 F1 −
Five-beam model F1 0.2 F1 0.1F1 0.2 F1 F1

Table 2
Tension force F1 in the top layer of a simply supported five-layered GS with length 3 µm,
width 0.6 µm, predicted by different multiple-beam models. (Fundamental resonant
frequency is assumed to be 30 MHz).

Three-beam model Four-beam model Five-beam model

F1 (nN) 29.0799 29.0799 29.0799
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