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A B S T R A C T

Bayesian approaches to statistical inference and system identification became practical with the development of
effective sampling methods like Markov Chain Monte Carlo (MCMC). However, because the size and complexity
of inference problems has dramatically increased, improved MCMC methods are required. Dynamical systems
based samplers are an effective extension of traditional MCMC methods. These samplers treat the posterior
probability distribution as the potential energy function of a dynamical system, enabling them to better exploit
the structure of the inference problem. We present an algorithm, Second-Order Langevin MCMC (SOL-MC), a
stochastic dynamical system based MCMC algorithm, which uses the damped second-order Langevin stochastic
differential equation (SDE) to sample a posterior distribution. We design the SDE such that the desired posterior
probability distribution is its stationary distribution. Since this method is based upon an underlying dynamical
system, we can utilize existing work to develop, implement, and optimize the sampler's performance. As such, we
can choose parameters which speed up the convergence to the stationary distribution and reduce temporal state
and energy correlations in the samples. We then apply this sampler to a system identification problem for a non-
linear hysteretic structure model to investigate this method under globally identifiable and unidentifiable
conditions.

1. Introduction

Bayesian methods for identification and estimation are critical to
the robust understanding of a system because they allow us to quantify
all of our uncertainty about the system using a probability distribution
and to update this distribution with new information [1–9]. By taking
the Bayesian approach, we are able to effectively capture our prior
knowledge about a model and rigorously assess the plausibility of
candidate model classes based on system data. Finally, we can then
make robust probabilistic predictions that incorporate all uncertainties,
allowing for better decision making and design. This robust approach is
particularly relevant for system identification, where the inverse
problems are often ill-posed and many candidate models exist to
describe the behavior of a system.

We can broadly classify the posterior probability distributions that
result from solving the inference problem into three types: globally
identifiable, locally identifiable, and unidentifiable [1,10]. Globally
identifiable probability distributions have a single pronounced peak
around a unique maximum. Locally identifiable distributions have
several separated peaks, each of approximately the same significance.
Unidentifiable models do not have peaks, but instead have a manifold
in the parameter space on which all values are approximately equally
plausible based on the data and the selected prior information. When
the problem results in a locally identifiable or unidentifiable distribu-
tion, Bayesian methods are essential since they can fully capture this
complex distribution in a way optimization based system identification

methods cannot. However, these types of problems still produce a
significant challenge to computational Bayesian methods since it is
often difficult to find and explore all the peaks or the manifold of
plausible solutions.

Prior to the development of scientific computing, Bayesian method
were restricted to inference problems where the posterior distribution
could be expressed as a simple analytical distribution. While approx-
imate methods exist, they are often have difficulty in handling locally
identifiable or unidentifiable problems [4,11], where Bayesian methods
are most needed. As a result, sampling methods are commonly used.
The most common family of sampling methods is Markov Chain Monte
Carlo (MCMC) [12], which creates a Markov chain defined by a
transition rule, or kernel, whose stationary distribution is the desired
posterior. In order to make estimates accurately, the samples must
discretely capture the posterior distribution in a probabilistically
appropriate way. This makes MCMC computational intensive, as often
thousands to millions of model evaluations are needed to fully populate
the high probability content of the posterior. While, by the central limit
theorem, the estimate quality for the mean of a finite-variance
stochastic variable scales independently of the dimension given in-
dependent samples, MCMC methods produce correlated samples, which
can introduce poor high dimensional scaling. Many high dimensional
problems where it is difficult to produce an efficient proposal distribu-
tion experience a “curse of dimensionality” because the sample
correlation becomes very high. Thus, solving inference problems using
Bayesian methods is often prohibitively expensive because sampling
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high dimensional distributions efficiently is challenging.
One of the most successful methods for sampling high dimensional

distributions is Hamiltonian Monte Carlo (HMC) [13,14]. HMC uses an
auxiliary Hamiltonian dynamical system to propose samples far from
the current sample in the parameter space but with similar probability.
The position coordinates of this auxiliary system correspond to the
inferred model parameters. The proposal trajectory conserves the
Hamiltonian, which is related to the posterior probability. As a result,
even though the candidate samples are far from the current sample,
they will have high acceptance probability, thus reducing sample
correlation. This is achieved by constructing a Hamiltonian dynamical
system whose potential energy function is the negative log posterior
probability density function (PDF), while the kinetic energy function is
quadratic in the velocity coordinates of the auxiliary system, giving the
corresponding momentum vector a Gaussian distribution. The marginal
position distribution of this system is the desired posterior. An applica-
tion of HMC to Bayesian updating of high-dimensional dynamic systems
is given in [15].

This auxiliary dynamical systems approach can be extended to
stochastic dynamical systems, described by a stochastic differential
equation (SDE) whose stationary distribution corresponds to the poster-
ior of the Bayesian inference problem. These SDE approaches can not
only be used in a standard MCMC framework, but can also be used to
approximate the distribution without Metropolis steps [16–18]. SDEs
are an active area of research, so there is a great opportunity to leverage
these results to study the properties of these algorithms, such as work in
infinite spaces [19,20]. The damped second-order Langevin equation
has recently been introduced as a sampler for Bayesian inference
[21,17,19]. This SDE is an effective choice because it combines
Hamiltonian dynamics with an Ornstein–Uhlenbeck process, which
enables the state to both follow likely trajectories and to diffuse.

We introduce a new sampling method, Second-Order Langevin
Monte Carlo (SOL-MC), which extends previous work on SDE samplers,
and increases its applicability to system identification problems. This
sampler combines a non-metropolized SDE optimized for convergence
to the posterior manifold with a metropolized SDE which can effec-
tively sample the posterior while reducing sample correlation. We then
apply results from dynamical system and control theory to tune the
parameters of the SDE to optimize the sampler's performance by
balancing the influence of the “exploring” diffusion and “exploiting”
Hamiltonian dynamics for Gaussian like distributions. Further, we are
able to utilize new computational tools like automatic differentiation to
make simulating this SDE tractable for system identification problems.

This paper is organized as follows. Section 2 discusses the Bayesian
System Identification problem and standard computational methods.
Section 3 introduces the SOL-MC algorithm and implementation.
Section 4 discusses tuning SOL-MC to optimize performance. Section
5 presents an example system identification problem to investigate SOL-
MC under different conditions. Finally, Section 6 presents concluding
remarks.

2. Bayesian System Identification

2.1. The Bayesian framework

The Bayesian framework is a rigorous probabilistic method for
representing our own uncertainty using probability distributions. This
philosophy is rooted in probability as a logic [4,22–24]. Within this
framework, probability distributions are used to quantify uncertainty
due to insufficient information, regardless of whether that information
is believed to exist but is currently not available (epistemic uncer-
tainty), or it is believed not to exist because of postulated inherent
randomness (aleatory uncertainty). This makes the Bayesian framework
the appropriate framework for posing system identification problems.
Therefore, we view system identification as updating a probability
distribution that represents our beliefs about models of a system based

on new information from system response data.

2.2. Problem formulation

We consider a continuous-time deterministic system model with
state x ∈ Ns, unknown fixed parameters θ ∈ Np, and known inputs

u ∈ Ni described by the differential equation:

x t f x t u t θ˙ ( ) = ( ( ), ( ), ) (1)

The initial state x (0) can either be considered an unknown parameter
and included in θ or a known parameter. The actual output of this
system, y t( ), for input u t( ), is measured at discrete points ti for
i N= 1… . Given the state x t( )i , input u t( )i , and parameters θ, the
predicted measured outputs are assumed to be subject to independent
combined stochastic measurement and prediction errors ν t θ( , ) mod-
eled by a parameterized distribution with possibly unknown parameters
that are included in the model parameter vector θ. Conditioned on
ν t θ( , )i , the output y t( )i is modeled as:

y t h x t u t ν t θ θ( ) = ( ( ), ( ), ( , ), )i i i i (2)

One formulation of Bayesian System Identification is then [4]: Given
the input–output observation data  u t y t i N= { ( ), ( ), = 1… }i iD , and a
system model classM consisting of (a) the prescribed functions f h{ , } in
(1), (2), respectively, (b) a probability distribution for ν, and (c) a prior
distribution, p θ( )M , representing our initial beliefs about the relative
plausibility of the possible values of the model parameter vector θ, find
the posterior distribution p θ( , )D M , representing our updated beliefs.
For this we employ Bayes’ Theorem:

p θ p θ p θ
p

( , ) = ( , ) ( )
( )

D M
D M M

D M (3)

where the likelihood function, p θ( , )D M is given by substituting the
data D into the model prediction of the measured system output, so it
gives a measure of the plausibility of the data according to the model in
M specified by θ.

The normalizing factor in (3), p ( )D M , is the evidence for M :

∫p p θ p θ dθ( ) = ( , ) ( )D M D M M (4)

This integral over the whole domain of θ is usually analytically
intractable and computationally challenging to evaluate numerically.
As a result, typically only the ratio of posterior density for sample
points can be computed. Markov Chain Monte Carlo uses these ratios to
generate samples from the posterior distribution (3). These sample
points can then be used to estimate the expectation of a function g θ( )
with respect to the posterior distribution. Analogous to the central limit
theorem for independent, identically distributed stochastic variables,
the central limit theorem for Markov chains [25] implies that:

 ∫ ∑g θ g θ p θ dθ
N

g θ[ ( ) , ] = ( ) ( , ) ≈ 1 ( )
i

N

i
=1

D M D M
(5)

where θi is a sample drawn from the posterior.

2.3. Computational methods

The basis for many MCMC methods is the Metropolis–Hastings
algorithm, which produces a Markov chain with a desired stationary
distribution, π θ( ), by designing a transition kernel, K θ θ( ′ ), such that
the Markov chain is ergodic and reversible [25,26]. Reversibility is a
sufficient condition for the existence of a stationary state defined as part
of the detailed-balance condition:

π θ K θ θ π θ K θ θ( ) ( ′ ) = ( ′) ( ′) (6)

This means that we can choose any transition kernel K θ θ( ′ ) and
maintain the stationary distribution π θ( ), as long as the condition (6)
holds.
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