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A B S T R A C T

This work is devoted to strain analysis and optimal design of a Functionally Graded (FG) rods and beams with
small inclusions. The homogenization procedure plays a key role in our investigations. The method is illustrated
using an example of the rod longitudinal deformation and bending of a beam. We consider the cases of FG
inclusion sizes and FG steps between inclusions separately. Particular problems of optimal design are discussed
in some details. The mathematical model of the bending beam, which adapts to the external load action, is
proposed and an illustrative example of the adaptation process is given.

1. Introduction

The mechanical response of materials with spatial gradients in
composition and structure is of considerable interest in numerous and
diverse disciplines, such as tribology [1], geology [2,3] optoelectronics,
biomechanics [4,5], fracture mechanics [6], and nanotechnology [7,8].
A fundamental approach allowing for deduction of the macro-scale laws
and the constitutive relation by proper homogenization over the micro-
scale is known as the homogenization method [9–17]. This method is
also successfully used for modeling and simulating mechanical behavior
of the FG Materials (FGM) [18,19] and the Functionally Graded
Structures (FGS). Typically the term FGS is associated with the
constructions made/fabricated from FGM. However, in this paper, the
term FGS is understood in a broader manner, since the heterogeneous
constructions with a controlled heterogeneity parameter are also taken
into account (for instance, the reinforced plates and shells with
nonuniformly distributed ribs of different stiffness; goffer-type con-
structions consisting of different amplitudes of goffer shapes and their
half-wave length, etc. [20–25]). FGMs are composites consisting of two
different materials with a gradient composition. In the case of applica-
tion of the homogenization method, the coefficients of periodic
composites state equations are usually [9–13] approximated by the
first terms of their Fourier series (Fig. 1a). In a similar way [20–25], the
coefficients of FGSs state equations with FG inclusion sizes (Fig. 1b) and
FG step between the inclusions (Fig. 1c) can be approximated.

However, the truncated Fourier series (even for a small number of
terms) relatively well approximate the coefficients of the constitutive
equations for large concentration of inclusions (fibres, ribs, etc.), when
the distance between inclusions is of the same order as their typical
sizes. However, for small concentration, when the distance between
inclusions is essentially larger than their size, the constitutive equation
coefficients are approximated by impulse periodic function (see, for
instance, Fig. 1d). In this case, a usual homogenization procedure may
be accompanied by some problems to be directly applied.

Therefore, for a small concentration of inclusions, it is recom-
mended to use the further presented variant of homogenization
method, where small sizes of the inclusions with respect to the distance
between them are utilized to employ the asymptotic procedure.
Modifications of this approach for FGS with small inclusion concentra-
tions are also proposed.

The applied method is illustrated using a relatively simple problem,
i.e., we consider a rod with a longitudinal strain. In our investigations,
the rod diameter is taken commensurable with inclusions sizes.

2. FG inclusion sizes

FG properties can be achieved, for instance, by applying different
inclusion sizes. Let us analyze an influence of different sizes of
inclusions on the longitudinal rod stiffness, keeping the distance
between inclusions (Fig. 2) constant. We define changes of the inclusion
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dimensions by a function V V x= ( ).
In what follows, we consider a deformation of the FGM rod

subjected to the spatially distributed load P z( ) and the inclusions
(Fig. 2) by being equivalent to concentrated elastic elements (Fig. 3).
Observe that for composites with regular structure, the analogous
models of two-component rod are applied (see references [26–28]).

Obviously, a number of n is large, and hence the distance
l z z= −i i−1 between them is much less than the rod length L, l«L.
Therefore, in order to investigate the longitudinal deformation of the
two-component rod (Fig. 3), one may apply the following variant of the
homogenization procedure.

Equilibrium equation of the rod part between the concentrated
elastic elements has the following form

d u
dx

p= ,
2

2 (1)

where: x z l= / ; u v l= / ; v is the longitudinal displacement; p = ;P lx
lk
( )

0
k0=E0F; E0 is Young's modulus of the rod material; F is the cross section
area.

Since the approximate inclusions composed of the elastic elements
can be treated as discrete elastic cross sections, the associated compat-
ibility conditions regarding the i-th inclusion follow
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k1 is the stiffness of

the discrete elastic inclusions.

3. Homogenization procedure for longitudinal deformation

Owing to the homogenization approach, let us introduce the “fast”
variable ξ

ξ x ε= / , (3)

where ε=1/n «1.
We treat the variables x and ξ as independent ones, and the

differential operator used in (1), (2) has the following form

d
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Displacement u can be presented in the following form

u u x ε u x ξ ε u x ξ= ( ) + ( , ) + ( , ) + ... ,0
2
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3

2 (5)

where us (s=1,2,…) is a periodic function with respect to ξ with period
n.

Substituting Ansatzes (4), (5) into Eq. (1) and compatibility condi-
tion (2) and carrying out the splitting with respect to ε, the following
homogenized equation describing the longitudinal displacement of the
two-component rod is obtained

d u
dx

k x u p+ ( ) = .
2

0
2 0 (6)

Micromechanical effects are described by the functions us (s=1,2,
…). For the function u1 on the period ξ n∈(0, )one obtains:
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Next, the function u1 is periodically extended along the whole rod
length.

4. Inverse problem

The main advantage of the proposed approach is that it allows to
efficiently solve the problems of optimization, i.e., problems devoted to
determination of optimal characteristics of the internal material
structure protecting the given structure properties. In the studied case
of the FG amplitudes, the target characteristic is the function V˭V(x)
governing a rule of the inclusion sizes change. As an example we
consider the problem of determination of the function V(x) that
provides the largest longitudinal stiffness of the rod under a given load.

It is convenient to rather take the function k(x) as the control
function instead of the function V(x).

Without loss of generality, let us take the boundary conditions in the
following form

u du
dx

| = 0, | = 0.x x n=0 = (8)

In order to measure the rod stiffness properties, we take energy of
the elastic deformations and use zero-order approximation of the
displacement (5). Then, we define a minimum of the following
functional

Fig. 1. Schematic view of the constitutive equation coefficient a x( )for a composite: a) periodic structure; b) FG inclusion sizes; c) FG steps between inclusions; d) small inclusion
concentration.

Fig. 2. Schematic view of the rod with FG sizes of inclusions.

Fig. 3. Schematic view of the two-component rod with concentrated elastic elements.
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