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a  b  s  t  r  a  c  t

This work  explores  the  physics  of  an  ordered  set  of interacting  spheres  immersed  in a carrier  liquid.
We  present  numerical  simulations  that  compute  the translational  and  rotational  motion  of  N interacting
spheres  based  on classical  principles  of  Stokesian  dynamics.  The  spheres  are  assumed  to be  made  of  a
magnetizable  material,  subjected  to magnetic  and  hydrodynamic  long  range  interactions.  We  explore
structure  transition  using  a Lagragian  approach  of  a continuum  volume  of fluid  containing  micrometric
magnetic  particles.  We  present  local  maps  of  particle  volume  fraction  within  the calculation  Lattice.  In this
condition,  considering  the  presence  and  absence  of  an applied  magnetic  field,  instantaneous  snapshots  of
the  local  microstructure  are  taken.  Thus,  different  possibilities  of long  range  interactions  are  considered.
We  also  complement  these  results  with  meaningful  statistics  of  time  series  obtained  through  our simu-
lations,  such  as  the correlation  time  of velocity  fluctuations  and  their  self-correlation  functions.  The  data
analyzed  in  the present  work  sustain  the fact that  initially  ordered  neutrally  buoyant  suspensions  have
an anisotropic  memory-like  behavior  in  the  direction  of  an  applied  field.  It  is  also  observed  that  particles
tend  to  form  small  isotropic  clusters  in  the  absence  of an  external  field.  However,  hydrodynamic  inter-
actions  tend  to disperse  the particulate  phase,  avoiding  the  formation  of clusters.  This  finding  suggests
that  hydrodynamic  interactions  may  play  a relevant  role  on the  magnetization  dynamics  of  ferrofluids.

©  2017  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Geometrically ordered structures appear in several fields of
human knowledge. Crystals, foams, and solid molecular arrange-
ments are some examples of ordered structures in nature. In fluid
mechanics an ordered set of spheres can be used as a simpli-
fied model of a porous media [1,2]. Several scientists have been
interested in exploring the physics of ordered structures in fluid
mechanics. A pioneer work of [3] explored the lubrication film
between interacting spheres and discussed the physics of Boer-
lage four-ball testing instrument for lubricants and additives. This
instrument is an example of practical usage of ordered sets of
spheres in fluid mechanics. Another example found in the scientific
literature regarding the study of ordered suspensions of spheres
is the work of [4], in which he explored rheological properties
of ordered suspensions of polystyrene latex spheres suspended in
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water. More specifically, [4] used spectrophotometric and conduc-
tance stopped-flow techniques to measure the internal relaxation
time of the suspension structure when subjected to a step strain
flow. In the 1990s the rheology and formation of ordered suspen-
sions and colloidal structures [5,6] was studied.

More recently, the work of Ten Cate and Sundaresan [7] explored
the unsteady forces in ordered arrays of monodisperse spheres. The
authors used Lattice–Boltzmann numerical simulations to under-
stand the forces generated by fluid-structure interaction. Another
recent work [8] provided the theoretical background to compute
the flow of a single sphere moving in creeping flow between
parallel walls. This is important due to the long range nature of
hydrodynamic interactions to which solid bodies moving in low-
Reynolds number flow are subjected. The same laws and theoretical
background must be used to develop numerical simulations of an
ordered set of spheres in creeping flow (one of the goals of this
work). In other recent works Yeo et al. [9,10] performed numeri-
cal simulations of highly concentrated non-Brownian suspensions
of spheres in confined shear flow and observed ordering transition.
The list of problems in fluid mechanics involving ordered structures
passes through foams [11], granular flows [12], ordered arrays of
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spheres in heat and mass transfer applications [13,14], crystals [15]
and creeping flow in organized structures of rotating spheres.

In the present work, we intend to deal with a special type of
ordered suspension. We  consider a set of non-Brownian, neutrally
buoyant magnetic spheres suspended in a viscous fluid. Our goal
is to explore structure transition due to different physical mecha-
nisms which include: dipolar interaction, an external applied field
and long range hydrodynamic interactions, besides a combination
of all the three mentioned mechanisms. For this purpose we use
a research code developed by the author [17]. The code uses a
robust Ewald summation technique [19] to compute long range
interactions. The periodic summation technique is applied over the
Rotne–Prager mobility tensor [20] as first introduced by the pioneer
work of Beenakker [21]. The goal of this work is to explore structure
transition in non-Brownian liquid-solid magnetic suspensions and
to understand the underlying physical mechanisms behind the for-
mation of particle clusters with specific geometries. We  also intend
to explore the long time statistical behavior of particle velocity
fluctuations induced by long range interactions among the spheres.

2. Formulation

We  consider a set of N magnetic spheres immersed in a vis-
cous Newtonian liquid with zero initial velocity. The spheres are
neutrally buoyant and are initially distributed in an ordered man-
ner. They are subjected to magnetic and hydrodynamic long range
interactions. We  assume that the mass of each sphere is small, thus
they have negligible inertia and can be treated through a mobility
problem. The dimensionless equation that computes the velocity
of each sphere is given by

ui = Ms
i,i · f i +

N∑
j /=  i,j=1

Mp
i,j

· f j, (1)

with

f i = f ri + f ci + fmi . (2)

Here ui is the velocity of an arbitrary particle i, Ms
i,i is the

self-mobility matrix, Mp
i,j

represents the pair-mobility matrix,

expressed as two sums in the physical L and reciprocal L̂ spaces, fi
and fj denote the forces acting on particles i and j respectively, f ri , f ci
and fmi are the repulsive, contact and magnetic forces acting on an
arbitrary particle i. We  do not account for gravitational forces, since
we consider a neutrally buoyant suspension. The matrices Ms

i,i and

Mp
i,j

are given by

Ms
i,i =

(
1 − 6��−1/2 + 40

3
�3�−1/2

)
I, (3)

and

M ij(r′) =
∑
x ∈ L

M1(r′ + x) + 1
V

∑
k ∈ L̂,k  /=  0

M2(k) cos(k · r′). (4)

where � = �2/V3 is a parameter set to accelerate the convergence
of the sum, V is the volume of a single Lattice, I is the identity ten-
sor, r′ is the vector connecting the edges of the central Lattice with
the edge of the surrounding Lattices, x is the position of an arbi-
trary particle with respect to the origin of the system and k̂ = k/k
is the dimensionless wavenumber, related to the spectrum of par-
ticle positions by the relation k = 2�/(x + r′). The mobility matrices
M1 and M2 are given by the classic work of Beenakker [21].

The forces f ri , f ci necessary to calculate each particle velocity as
expressed in (1) are given in their dimensionless versions as

f ri = �
∣∣ui∣∣ e(−�ij/Y)êr , f ci = Pc�

3/2
ij

êr , (5)

where �,  Y  and Pc are calibration constants of our model [17]. The
variable �ij represents the dimensionless distance between the sur-
faces of particles i and j. The expression used to compute magnetic
forces due to long range dipolar interactions is given in details by
Gontijo et al. [17,18].

For the angular motion, neglecting rotational inertia we  have

ωi = T im, (6)

where ωi denotes the angular velocity of an arbitrary particle i and
T im represents magnetic torques due to Longe range dipolar inter-
actions between the particles and to field-particle interaction. The
complete expression for T im is provided in the works of Gontijo et al.
[17,18].

The physical parameters that appear in the dimensionless sys-
tem of governing equations are denoted by ϕm and  m. These
parameters are defined respectively as follows:

ϕm = �0m2
d

8�2�a5U0
and  m = �0mdH0

6��a2U0
, (7)

where U0 is a typical velocity of the problem (i.e. in a magnetic sus-
pension U0 could be the average velocity of approximation between
two magnetic particles, during the formation of a dimmer), �0 is
the magnetic permeability of the free space, md is the magnitude
of the magnetic dipole moment of a single particle, H0 is a typical
value of the imposed external magnetic field, a is the radius of the
particle and � is the viscosity of the surrounding fluid.

3. Results and discussions

Fig. 1a shows the initial local volume fraction distribution within
the calculation domain (primary Lattice in the physical space) for

Fig. 1. (a) Side view in the plane zy of the local concentration field for t = 0. (b) Initial
distribution of particles.
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