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a b s t r a c t 

Position accuracy is a prerequisite for compliant mechanisms, especially in micro-scale ap- 

plications. Generally, this feature depends on the flexures ability to imitate the revolute 

joints of the pseudo-rigid body model. In case of flexible elements, the center of the rel- 

ative rotation varies its position during the deflections, affecting the position accuracy. In 

this paper, the role played by the initial curvature is investigated, in case of uniform prim- 

itive flexures. Analytical expressions are derived to evaluate the shift of the rotation axis 

with respect to the flexure centroid. An example shows the performance of four flexures 

with different curvatures, evaluated by comparing the rotation axis shift and the position 

error. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Compliant mechanisms are being increasingly used because they offer some advantages with respect to their rigid-body 

counterparts, such as reduced friction and backlash, no need for lubrication, simplified manufacture, fabricability at macro, 

meso and micro scale, and compatibility with MEMS-based technologies. 

Compliant mechanisms have been applied, for example, in the fields of micro-manipulation [1–5] , micro-positioning 

[6–10] , precision manufacturing [11,12] . Applications in these areas require high position accuracy, therefore precision of 

analytical models represents a significant challenge in compliant mechanisms design [13,14] . 

Generally, the synthesis of a compliant mechanism can be performed by means of freedom and constraint topologies 

[15–17] , topology optimization [18–20] , building blocks [21–23] , or rigid-body replacement [24–26] . The rigid-body replace- 

ment method consists in obtaining a compliant mechanism by replacing the revolute joints of a rigid-body mechanism, or 

pseudo-rigid body model (PRBM), with flexible elements. In case of straight-axis primitive flexures, the position of the flex- 

ible element with respect to the revolute joint can be determined according to different criteria. If the length of the flexure 

is small if compared to the subsequent rigid links, its midpoint can be placed on the position of the revolute joint. If the 

length of the flexible beam is comparable to the rigid elements, its position with respect to the revolute joint can be de- 

termined by parametric approximation of the beam’s deflection path, by calculating the characteristic radius factor [27,28] . 

Another possible criteria consists in positioning the center of rotation of the flexure on the revolute joint [29] . 

The position accuracy of a compliant mechanism depends on the mechanical characteristics of the flexure and on its 

position with respect to the connecting links. In other words, the motion accuracy of the compliant mechanism depends on 

the flexure ability to imitate the behaviour of the revolute joint. Whilst the latter guarantees a fixed position for the center 
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of the relative rotation of the connecting links, the deformation of the flexure depends on the applied loads. Therefore, the 

center of rotation varies its position during motion. This condition is referred to as axis shift or parasitic motion [30,31] . 

To improve the performance of compliant systems in terms of range of motion and precision of rotation, but also in 

terms of stress concentration or off-axis stiffness to axial stiffness ratio [32] , many investigations have been focused on the 

development of complex flexures. These flexures combine more flexible elements or involve contact systems [33–37] . In fact, 

the variation of the position of the center of rotation occurs especially in primitive flexures, such as straight- or curved-axis 

beams, undergoing large deflections. In case of end-moment loads, the center or rotation moves along the axis of symmetry 

of the flexure, and its distance from the axis centroid increases for increasing loads [29] . 

Recent investigations focused on the adoption and on the modeling of circular flexures in compliant mechanisms. Wang 

et al. used the PRB to model corrugated beams [38] , and Han et al. designed a quadstable monolithic mechanism based 

on curved elements [39] . Edwards et al. proposed a PRB model for curved beams spinned at both ends [40] , whereas 

Venkiteswaran and Su developed a PRBM for circular beams subjected to combined loads [41] . 

With respect to straight-axis beams, curved flexures offer more flexibility in the design phase, introducing a new parame- 

ter, that is the radius of curvature. This parameter can be set in order to optimize the geometry of the compliant mechanism, 

for example to minimize the distance between two subsequent rigid links or to overcome geometrical constraints. However, 

this parameter has an effect on the position of the center of rotation of the flexure. As a consequence, it affects also the 

position accuracy of the compliant mechanism. 

This paper focuses on the role played by the initial curvature of uniform flexures on their ability to mimic the rotational 

accuracy of revolute joints. The analysis is performed considering constant cross-section beams subjected to end-moment 

loads. Analytical expressions are derived to determine the position of the center of rotation with respect to the beam axis 

centroid. Various axis curvatures are considered, including the straight-axis case. 

2. Position of the center of rotation of the free-end section 

Considering a constant-curvature beam with axis length equal to l , the Euler-Bernoulli beam equation can be written as 

dθ

ds 
= 

μ

l 
, (1) 

where s is the arc-length coordinate system, d θ / ds is the rate of change of angular deflection along the beam, and 

μ = μ0 + ˜ μ (2) 

is a non-dimensional term equal to the sum of 

μ0 = 

l 

r 
, (3) 

where r is the radius of curvature, and 

˜ μ = 

M 

EI 
l , (4) 

where M is the bending moment and EI is the bending stiffness. 

With reference to Fig. 1 , the application of an external moment to the flexure free-end, represented by ˜ μ, determines a 

transition from the initial configuration, C μ0 
, to the deformed one, C μ. The orientation of the free-end section varies from 

the angle θE to the angle θ F , and its centroid moves from point E to point F . The position of the pole of the displacement, 

or center of rotation, C r , is given by [42] : 

x C r 
l 

= 

1 

2 l 

(
x E + x F − ( y F − y E ) cot 

θF − θE 

2 

)
, (5) 

y C r 
l 

= 

1 

2 l 

(
y E + y F + ( x F − x E ) cot 

θF − θE 

2 

)
, (6) 

where the Cartesian coordinates are normalized with respect to the beam axis length. As demonstrated in Ref. [29] , a con- 

venient representation of the C r coordinates can be obtained by introducing the reference frame R O { O, x, y, z} , whose origin 

is positioned on the centroid of the clamped section, and whose y −axis is parallel to the arc chord. With respect to R O , the 

position of the free-end section in the neutral and deformed configurations are given by 

p 

0 
E = 

[
0 , 

sin α

α

]T 

, (7) 

and 

p 

0 
F = 

[ 
1 

μ
( cos ( α − μ) − cos α) , 

1 

μ
( sin α − sin ( α − μ) ) 

] T 
, (8) 
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