Accepted Manuscript

Title: Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals

Author: <ce:author id="aut0005" author-id="S0141635916304470-1ab18e6e5f45e4f63f3850a3a232665d">K. Patra<ce:author id="aut0010" author-id="S0141635916304470c0961f4fe98a8adc4220047fb3a8f8eb"> A.K. Jha<ce:author id="aut0015" author-id="S0141635916304470-54c254ec1f259c491cc263b6b7505629"> T. Szalay<ce:author id="aut0020" author-id="S0141635916304470-54c254ec1f259c491cc263b6b7505629"> T. Szalay<ce:author id="aut0020" author-id="S0141635916304470-54c254ec1f259c491cc263b6b7505629"> T. Szalay<ce:author id="aut0020" author-id="S0141635916304470bf04d772e8cb832b269f0ec3161680fb"> L. Monostori

PII:	S0141-6359(16)30447-0
DOI:	http://dx.doi.org/doi:10.1016/j.precisioneng.2016.12.011
Reference:	PRE 6505
To appear in:	Precision Engineering
Received date:	27-11-2014
Revised date:	26-6-2016
Accepted date:	30-12-2016

Please cite this article as: Patra K, Jha AK, Szalay T, Ranjan J, Monostori L.Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals.*Precision Engineering* http://dx.doi.org/10.1016/j.precisioneng.2016.12.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Artificial neural network based tool condition monitoring in micro mechanical peck drilling using thrust force signals

K. Patra^{1*}, A. K. Jha¹, T. Szalay², J. Ranjan¹ and L. Monostori²

¹Mechanical Engineering department, Indian Institute of Technology Patna, Bihta, Patna-801103, India ²Department of Manufacturing Science and Engineering, Budapest University of Technology and Economics, H-1111, Budapest, Hungary

*Corresponding author: Email: kpatra@iitp.ac.in, ph. +91-612-2552012

Download English Version:

https://daneshyari.com/en/article/5019157

Download Persian Version:

https://daneshyari.com/article/5019157

Daneshyari.com