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a  b  s  t  r  a  c  t

The  use  of data  mining  within  manufacturing  is a relatively  modern  application.  Data  mining  can  be  used
to  find  underlying  links  between  the  machining  conditions,  and  parameters,  and  the  final  form  of  the
part.  Part of this  procedure  includes  defining  the form  of  the  part,  known  as  the  manufacturing  signature,
which  stems  from  all steps  in the manufacturing  process.  In  this  paper,  two potential  definitions  for
the  manufacturing  signature  of  cylindrical  objects  are  generated  in terms  of  an  analytical  basis.  The
first description  uses  a simple  Fourier  description  (known  as  lobing)  and  the  second  consists  of  a  fully
orthonormal  description  in  terms  of  Forsythe  polynomials  and  Fourier  coefficients.  Principal  Component
Analysis  (PCA)  is also  partially  used  to investigate  the  underlying  structure  of the  cylinders  and  investigate
the  connection  between  the analytical  description  and  PCA.  Experiments  were  carried  out,  machining
thirty  components  under  different  manufacturing  conditions  (such  as  coolant  pressure,  tool  length  etc.).
Data  mining  was  then  carried  out on  the  process  parameters,  and  either  the  amount  of  a  given  type of
lobing  or the  classification  of the cylinder  in  terms  of  the maximal  lobing.  The  input  to  data  mining  for  our
case  is either  a numeric  answer  or a classification,  which  motivates  the  use  of  a simplified  description.
The  use  of  PCA  on this  data  set  indicates  a  fundamental  issue  stemming  from  subsets  of “similar”  data
which  means  dimensionality  reduction  is  not  possible  in  the  usual  way.  The  use of  the  analytical  basis
suggests  a  new  sampling  strategy  to be used  on  certain  geometries  utilising  Gauss-Legendre  quadrature.

Crown  Copyright  © 2016  Published  by  Elsevier  Inc.  All  rights  reserved.

1. Introduction

The manufacturing process often leads to components which are
distorted from the intended design. This distortion can be caused
by many effects; machining conditions such as temperature or
tool wear, material composition and grain structure, residual stress
relaxation after manufacturing, post processing and multiple man-
ufacturing steps, manufacturing method, part geometry, operator
or machine tool path variation, and many more influences. The
manufacturing signature [1] is also not simply the final manufactur-
ing step, but a product of all of the steps which can lead to different
types of distortion. There is also a measurement signature [2,3],
which although typically minimal [4], influences the final observa-
tion of the part; for example in roundness testing it is known that
the effect of off-axis measurement leads to a limaç on [5], which
is then the fitted shape to correct for this measurement signature.
Once a component is measured, there are two contributions which
lead one to believe the component is not the same as the design; the
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manufacturing signature (“real” distortions), and the measurement
signature (“observed” distortions).

In order to understand the manufacturing signature, there is a
need to define the shape of components beyond that of standard
metrological defined shapes. For example, for a flat plate, flatness
is a description of the form error, but it offers no information about
the shape of the plate. A greater understanding of the underlying
shapes allows one to link the manufacturing conditions to the dis-
tortions, and arrive at a more optimal part through prediction and
feedback. A simple classification of the form error (such as flat-
ness) may  also be minimised in the feedback loop, but in general
can come from multiple sources unlike the underlying structure.
Relaxing residual stresses tend to induce curling of flat plates, while
a poorly overlapping tool path generates periodic structure in the
surface. The flatness measurement only detects the size of the dis-
tortion, not any description therein [6].

The literature has recognised this need for a long time, and
is hugely extensive; an excellent review can be found in [7] and
more recently [1] which highlight the large number of areas where
more advanced form fitting have been used. Specific to cylinders,
the focus of this research, the standard description uses a Fourier-
Chebyshev basis [7,8], Principal Component Analysis (PCA) [6], or
lobing analysis [7,9,10], extended zone mettttthod [1,8]. This paper
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offers a similar approach, but focuses on an exact transformation of
the data rather than least-squares error. This transformation affords
a more detailed understanding of the distortion from the desired
design, and can lead to a better understanding of the manufacturing
process.

The final goal of classifying point cloud data in terms of a man-
ufacturing signature is to use it for data mining. The use of data
mining within manufacturing is relatively new, and comes with
a large number of issues [8,11–14]. Here the focus is solely on
the description of components in the context of data mining. The
full measurement data is typically too dense for meaningful rule
generation, while metrological characteristics are concerned with
tolerances rather than form, and offer no understanding of the
underlying distortion. Therefore, a simple yet meaningful descrip-
tion of the distortion of components could be used to generate
predictive models of component quality [15]. It is important to note
that using data mining techniques does not provide understand-
ing of the underlying physics, but can find underlying correlations
and mutual information in high dimensional data which link input
parameters to the output.

There are two main findings from this work; a new mea-
surement strategy and a failing within applying PCA in certain
situations. Firstly, this analysis has elucidated the fact that the mea-
surement process is the same as an overlap with the underlying
structure, and therefore the optimal placement of measurement
points (depending on the boundary conditions) are Gauss-Legendre
points, or a uniform distribution. These sample points (and asso-
ciated weights) then offer the optimum information about the
underlying surface. The application of PCA has shown that it fails in
certain situations, when there is a subset of data which is similar to
itself, but different to the rest. When this is the case, the PCA vectors
become dominated by this subset, and the top components are no
longer sufficient to describe the full data set. The technique offered
here, in terms of an exact basis, offers the same understanding of
the distortions, and does not suffer this problem.

The experiment carried out in this work constitutes the training
phase for data mining; initially data mining can be used to gener-
ate rules which are capable of predicting the distortions in the final
part based upon the machining and environment parameters. These
rules may  then be used to choose optimal machining and measure-
ment strategies, and updated with new data as the manufacturing
continues.

This paper is organised as follows; in section II are the exper-
iment details, sections III and IV describe the mathematical
background to the basis used and Principal Component Analysis
(PCA), sections V and VI are the results and discussion, and finally
section VII is the conclusion.

2. Description of artefact, manufacturing process and
measurement procedure

There were thirty components manufactured, each with eigh-
teen drilled features and 4 milled features, which is depicted in
Fig. 1. These components were manufactured at The Manufactur-
ing Technology Centre Ltd (MTC) in Coventry on a DMG  Mori 450.
The eighteen (blind) holes were split in to four depths; 10 mm,
15 mm,  20 mm and 25 mm,  and all were 6 mm diameter as depicted
in Fig. 2. The external milled cylinders had diameters 100 mm,
105 mm,  110 mm and 115 mm,  while the bottom cylinder was  used
for fixturing.

In order to induce variation between the features in a given
component, the machining parameters were varied. Six machining
parameters were included which were varied between features;
peck-drilling (off, 1 mm or 2 mm),  chip breaker (on or off), coolant
pressure (off, small or nominal value), pilot drill (on or off), air blast

Fig. 1. Depiction of manufactured component. Numbers indicate the milled external
cylinder nomenclature used.

Fig. 2. Depiction of manufactured component from the top view. Numbers indicate
the drilled cylinder nomenclature used.

Table 1
Manufacturing condition variables for drilled features.

Feature Number Peck Drilling Chip Break Coolant Pressure Pilot Drill

1, 7, 13 2 mm Yes Normal No
2,  8, 14 2 mm No Normal No
3,  9, 15 1 mm Yes Normal No
4,  10, 16 1 mm No Normal No
5,  11, 17 No Yes Lowest No
6,  12, 18 No No Normal Yes

Table 2
Manufacturing condition variables for milled features.

Feature Number Step Down Air Blast Coolant Pressure

24 2 mm No Nominal
25  No No Lowest
26  No No Nominal
27  No Yes None

(used instead of water coolant), step-down (two values of 2 mm or
full cut). There are eighteen drilled features, and the four relevant
variables were changed cyclically in patterns of six as indicated in
Table 1.

For milling there were 4 features, and the three variables were
changed as indicated in Table 2.
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