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a b s t r a c t 

Polynomial chaos expansion (PCE) is a well-established massive stochastic model reduction technique that ap- 

proximates the dependence of model output on uncertain input parameters. In many practical situations, only 

incomplete and inaccurate statistical knowledge on uncertain input parameters are available. Fortunately, to 

construct a finite-order expansion, only some partial information on the probability measure is required that can 

be simply represented by a finite number of statistical moments. Such situations, however, trigger the question 

to what degree higher-order statistical moments of input data are increasingly uncertain. On the one hand, in- 

creasing uncertainty in higher moments will lead to increasing inaccuracy in the corresponding chaos expansion 

and its result. On the other hand, the degree of expansion should adequately reflect the non-linearity of the an- 

alyzed model to minimize the approximation error of the expansion. Observation of the PCE convergence when 

statistical input information is incomplete demonstrates that higher-order PCE expansions without adequate data 

support are useless. Moreover, it makes apparent that PCE of a certain order is adequate just for a corresponding 

amount of available input data. The key idea of the current work is to align the order of expansion with a compro- 

mise between the degree of non-linearity of the model and the reliability of statistical information on the input 

parameters. To assure an optimal choice of the expansion order, we offer a simple relation that helps to align 

available input statistical data with an adequate expansion order. As fundamental steps into this direction, we 

propose overall error estimates for the statistical type of error that results from inaccurate statistical information 

plus the error that results from truncating the expansion of a non-linear model. Our key message is that any order 

of expansion is only justified if accompanied by reliable statistical information on input moments of a certain 

higher order. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Research over several decades has shown that modeling plays a very 

important role in reconstructing (as far as possible) the complex pic- 

ture of natural systems and offers a unique way to predict behaviors of 

the multifaceted processes at play in such complex systems. Most physi- 

cal processes appearing in nature are non-linear and, as a consequence, 

the required mathematical models are non-linear as well. Additionally, 

many natural systems are plagued in modeling by the ubiquitous pres- 

ence of uncertainty. The influence of uncertainties onto predictions of 

system behavior is often so strong that it may become the dominant 

aspect in simulations for applied tasks [1] . Moreover, modern simula- 

tion models often demand considerably extensive computational power 

that makes traditional approaches for stochastic simulation (e.g. Monte 

Carlo simulation [2] and related approaches [3] ) almost impossible. The 

greatest challenge of the overall modelling procedure is to construct 

∗ Corresponding author. 

E-mail address: Sergey.Oladyshkin@iws.uni-stuttgart.de (S. Oladyshkin). 

reliable and feasible models that can adequately describe underlying 

physical concepts and, at the same time, account for uncertainty. A rea- 

sonably fast and attractive approach to quantify uncertainty in complex 

and non-linear systems is to approximate the uncertain model prediction 

through the polynomial chaos expansion (PCE). 

Polynomial chaos expansion. Polynomial chaos expansion is an efficient 

approach that offers a massive reduction of computational costs in un- 

certainty quantification. PCE was originally introduced by Wiener [4] in 

1938. The key idea of chaos expansion theory consists in projecting a 

full-complexity model onto orthogonal or orthonormal polynomial bases 

over the parameter space. Such a reduction of an original model allows 

to capture the non-linear dependence of quantities of interest on uncer- 

tain input parameters [5] . During the last decades, PCE technique has 

increased in popularity for different applications [6–9] . PCE has been 

combined with sparse integration rules [10–12] and optimal sampling 

rule has been proposed [13] . The adaptive multi-element polynomial 
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chaos approach [14] has been used to assure flexibility in treating the in- 

put distribution. Recently, an attempt to overcome problems with phys- 

ically constraint variables in PCE was suggested [15] . Thanks to the so- 

called non-intrusive approach to PCE [16–18] , which does not require 

manipulation of the governing equations, PCE has even been applied to 

complex physical systems [19–21] . The expanded model which is ex- 

pressed in the form of polynomials can be evaluated extremely quickly 

and even in real-time. This particular feature of PCE is highly valuable 

for applied realistic problems and hence a variety of tasks related to 

uncertainty quantification could be accomplished at reasonable compu- 

tational costs. The paper [22] showed how to use PCE for robust design 

under uncertainty with controlled failure probability. Recently, sensi- 

tivity analysis based on PCE decomposition [23–25] and [26] has re- 

ceived increased attention. The papers [27–29] and [30] demonstrate 

how classical PCE can deliver the information required for global sen- 

sitivity analysis at low computational costs. Due to feasibility of PCE, 

optimization tasks can be performed for computationally demanding 

applications, see e.g. [31] and [32] . Additionally, a stochastic model 

calibration framework was developed [33–35] based on strict Bayesian 

principles combined with the PCE. 

Incomplete and inaccurate statistical input data. Statistical input data 

plays a very important role in the overall modeling process. Unfortu- 

nately, statistical information about the uncertain input data is very lim- 

ited in realistic applications and very often is subjective, incomplete or 

inaccurate. Assuming the completeness of input statistical information 

can be acceptable for testing or research purposes, but when the goal is 

to tackle realistic applied problems, the used methods should be able to 

deal with incomplete statistical input. Treating incomplete information 

on input statistics is very challenging because it produces uncertainty 

in statistical quantities of model outputs [36] . This fact has been rec- 

ognized in the area of reliability engineering a long time ago [37] . The 

study [1] illustrates that errors or additional subjective assumptions in 

data interpretation can severely bias uncertainty quantification and risk 

assessment. Thus, output statics can be unreliable and uncertain [38] . 

The paper [39] suggests to build confidence intervals by bootstrap re- 

sampling in order to evaluate the reliability of the sensitivity indices 

constructed via the PCE. As often encounter in practice, limited samples 

of raw data can be an incomplete source of statistical information be- 

cause sample data sets do not contain perfect or complete information on 

the probability distribution of model input parameters. The incomplete 

knowledge of the statistical input directly translates to uncertainty in 

specifying its probability measures. The chaos expansion (among other 

approaches) can be as well applied to situations where only incomplete 

and inaccurate statistical knowledge on uncertain parameters is avail- 

able, but it will yield a biased estimate of the output statistics. However, 

it has been shown [40] that PCE at finite expansion order only demands 

existence and knowledge of a finite number of statistical moments for 

the input parameters and does not require the complete knowledge or 

even existence of a probability measure. Such circumstances trigger the 

question to what degree higher-order statistical moments of model input 

are increasingly uncertain. On the one hand, increasing uncertainty in 

higher moments will lead to increasing inaccuracy in the corresponding 

chaos expansion and its result. On the other hand, the degree of expan- 

sion should adequately reflect the non-linearity of the analyzed model to 

minimize the approximation error of the expansion. Therefore, the main 

challenge is to understand better which order of expansion is adequate 

for a corresponding amount of available statistical input information. 

The paper [40] provides a data-driven formulation of the PCE and al- 

ready contains an implicit relation between statistical moments and the 

expansion terms. This data-driven formulation introduced as arbitrary 

polynomial chaos expansion has already been exploited for applications 

in various disciplines (see e.g., [41–44] ). However, it is not yet very ap- 

parent that blindly increasing the expansion order could be not benefi- 

cial for the applied problems where only limited data is available for the 

analysis. Thus, the data-driven idea introduces in the paper [40] could 

be extended to understand how incomplete statistical information limits 

the utility of high-order PCEs. 

Approach and contributions. The scope of the current work is to align 

the order of expansion with a compromise between the degree of non- 

linearity of the model and the reliability of statistical information on 

the input parameters. We would like to emphasize that any order of 

expansion is only justified if it is accompanied by reliable statistical in- 

formation on input moments of a certain higher order. In Section 2 we 

deliver the necessary mathematical material to construct PCE from raw 

statistical moments. Moreover, in Section 3 we offer an inverse solution 

to the procedure presented in Section 2 and we demonstrate how raw 

moments can be reconstructed from an existing orthogonal polynomial 

basis. Thus, we show that the statistical moments characterizing a prob- 

ability measure are the only source of information that is propagated 

in all polynomial expansion-based stochastic approaches. Additionally, 

it makes transparent that only a finite number of moments has to be 

taken into consideration for constructing a finite-order expansion. Using 

a simple analytical model, we show in Section 4 how strong uncertainty 

in input statistical moments could be propagated onto PCE expansion 

coefficients. Additionally, Section 4 offer an explicit form for the pro- 

jection of monomials onto a polynomial basis which forms the basis to 

investigate the sensitivity of PCE to statistical input moments for dif- 

ferent degrees of model non-linearity. To assess the impact of incom- 

plete statistical input information in Section 5 , we perform a robustness 

analysis and illustrate the convergence of PCE under incomplete input 

statistics that are expressed through limited data samples. Furthermore, 

Section 5 proposes to align the complexity level with the reliability level 

of statistical information on the input parameters and offers a very sim- 

ple relation that puts into correspondence available input statistical data 

with an adequate expansion order. Thus, Sections 2 – 4 offer necessary 

developments used to align the expansion order with input statistical 

information and Section 5 delivers the main achievements that are rel- 

evant for practical applications. 

2. Constructing PCE from raw statistical moments 

Section 2 offers the necessary mathematical material to construct 

PCE from the raw statistical moments via the Hankel matrix of moments. 

In that way, we will demonstrate that only a limited amount of statisti- 

cal input information will be employed for construction of a finite order 

expansion. Please note that we use the Hankel matrix of moments only 

for analytical reasons and do not advise this approach for actual com- 

putations. A recent study [45] has provided numerical evidence that 

emphasizes the well-known fact that the Hankel matrix often has a poor 

numerical condition, and other approaches perform more accurately in 

numerical practice. 

2.1. Arbitrary polynomial chaos expansion 

We will consider a random process in the probability space (Ω, A , Γ) 
with space of events Ω, 𝜎-algebra A and probability measure Γ, see e.g. 

[46] for details. Let us denote a model as Y ( 𝜉) with model input 𝜉 ∈Ω
and model output Y . The model Y ( 𝜉) can be represented in differential, 

integral or closed analytical form. Since 𝜉 is a random variable, so is Y . 

According to the theory of PCE introduced by [4] , the random variable 

Y ( 𝜉) can be expanded in 𝜉 and approximated in the following manner: 

𝑌 ( 𝜉) ≈
𝑑 ∑
𝑖 =0 

𝑐 𝑖 𝑃 
( 𝑖 ) ( 𝜉) , (1) 

where d is the order of expansion and 
{
𝑃 (0) , … , 𝑃 ( 𝑑) 

}
forms a polynomial 

basis that is orthogonal (or orthonormal) with respect to Γ. That order is 

typically found as a compromise between computational costs and the 

non-linearity of the underlying model Y ( 𝜉). 
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