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Past few decades have seen a rapid growth in the availability of computational power and that induces continually reducing cost of simulation. This rapidly changing 

scenario together with availability of high precision and large-scale experimental data has enabled development of high fidelity simulation tools capable of simulating 

multi-physics multi-scale phenomena. At the same time, there has been an increased emphasis on developing strategies for verification and validation of such high 

fidelity simulation tools. The problem is more pronounced in cases where it is not possible to collect experimental data or field measurements on a large-scale or full 

scale system performance. This is particularly true in case of systems such as nuclear power plants subjected to external hazards such as earthquakes or flooding. 

In such cases, engineers rely solely on simulation tools but struggle to establish the credibility of the system level simulations. In practice, validation approaches 

rely heavily on expert elicitation. There is an increasing need of a quantitative approach for validation of high fidelity simulations that is comprehensive, consistent, 

and effective. A validation approach should be able to consider uncertainties due to incomplete knowledge and randomness in the system’s performance as well 

as in the characterization of external hazard. A new approach to validation is presented in this paper that uses a probabilistic index as a degree of validation and 

propagates it through the system using the performance-based probabilistic risk assessment (PRA) framework. Unlike traditional PRA approaches, it utilizes the power 

of Bayesian statistic to account for non-Boolean relationships and correlations among events at various levels of a network representation of the system. Bayesian 

updating facilitates evaluation of updated validation information as additional data from experimental observations or improved simulations is incorporated. PRA 

based framework assists in identifying risk-consistent events and critical path for appropriate allocation of resources to improve the validation. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Given the events at Fukushima–Daiichi nuclear power plant, there is 
an increased emphasis on using high fidelity simulation tools to eval- 
uate the vulnerability of nuclear facilities subjected to external haz- 
ards. Availability of sophisticated computer models capable of simu- 
lating multi-physics multi-scale phenomena has increased the need for 
verification and validation of such high fidelity simulations. Among the 
many challenges in this process, the two primary ones are: (1) lack of rel- 
evant plant-level data needed for validation of high-fidelity simulations, 
and (2) non-availability of a practical platform for implementing ratio- 
nal, consistent, and quantitative approaches for validation. While first 
item above is essential in any validation effort, it is usually restricted by 
high cost of collecting such data and in some cases inability to conduct 
large-scale experiments. The confidence in high-fidelity simulations de- 
creases due to excessive reliance on expert opinion for establishing the 
acceptability of high simulation models. 

The uncertainties due to inherent randomness and incomplete 
knowledge needed to predict behaviors of real physical complex sys- 
tems in different operating conditions as well as natural hazards pose 
significant challenges to the model validation assessment. Fidelity of 
a system-level computer simulation model is difficult to assess even 
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though a model for each component of the system can be individually 
validated with available component-level data. The quantitative system- 
level validation process involves a validation at component level, es- 
tablish the degree of validation in each case, determine a relationship 
between component-level and system-level performance, and finally es- 
tablish an inference of the degree of validation at system-level. The val- 
idation goal is difficult to achieve particularly in a quantitative sense 
because of the uncertainties in the relationship between different levels 
as well as in the parameters used for characterizing the performance at 
both the component and system levels. Consequently, four key aspects in 
this process are: (1) validation metric: characterization of an appropri- 
ate validation metric for quantitative comparison of simulation and test 
data, (2) predictive capability and confidence: inference on the degree 
of validation at system-level, (3) scaling: quantitative characterization 
of the relationship between component-level and higher-level perfor- 
mance, and (4) decision: an acceptance criterion to determine effective 
strategies for improving the validation. 

Validation metric: Many different approaches have been examined 
in existing literature for characterizing an appropriate metric for the 
model validation under uncertainties. In most cases, a graphical com- 
parison is employed to determine the degree of agreement between the 
simulation predictions and the actual observations. Classical statistical 
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hypothesis testing has often been employed for comparison of two sets 
of random variables [1–4] . The outcome of such a comparison is ex- 
pressed in terms of the probability which can then be combined with 
error statistics to determine the degree of validation. The Bayesian hy- 
pothesis testing approach has been also applied to validation problem 

[5–11] . More specifically, Kennedy and O’Hagan [5] define model bias 
as the difference between the means of experimental and simulation 
data. Zhang and Mahadevan [6] use the probability of Bayes factor ex- 
ceeding a specified value as the decision criterion for the model accep- 
tance/rejection. A direct comparison of mean values from simulation 
and experiment has also been used for the validation of simulation mod- 
els [12–15] . Alternatively, probabilistic measures have also been used 
[16–19] . 

Scaling: Some studies have also addressed the inference of the system- 
level validation starting with the component-level validation metric. A 

building block or hierarchical approach has been proposed for propa- 
gation of component level information to the system level through in- 
termediate sub-system levels [20–23] . In general, the amount of avail- 
able experimental data decreases as one proceeds from lower to higher 
levels. Therefore, a Bayesian network (BN) can be employed very effec- 
tively to update the statistical information for all nodes when additional 
information becomes available within the Bayesian hypothesis testing 
framework [24,25] . 

Effective use of Bayesian network requires availability of an explicit 
quantitative relationship between the component levels and the higher 
levels of the network. To do so, Mahadevan and Rebba [24] utilize mech- 
anistic equations to relate the higher-level output with lower-level in- 
put/output. 

Uncertainty modeling: For problems that could not be characterized 
by an analytical relationship, Rebba and Mahadevan [25] construct a 
stochastic response surface between lower-level and higher-level data. 
Jiang and Mahadevan [26] use a structural equation modeling approach 
to utilize the lower-level data for the higher-level model validation un- 
der uncertainty through a collective use of lower-level data, higher-level 
data, computational model, and latent variables. In order to address the 
acceptability of a model validation, Jiang and Mahadevan [27] propose 
a decision-making methodology by considering a risk-benefit approach 
in which the risk/benefits of using the current model and the data sup- 
port for the current model are evaluated with respect to the cost of ac- 
quiring new information for improving the model under the Bayesian 
hypothesis testing. 

In the context of the various existing studies summarized above, the 
validation problem continues to be challenging one due to a few differ- 
ent reasons. First, the existing definitions of a quantitative validation 
metric need significant improvement especially for addressing valida- 
tion problems that have large degree of uncertainties associated with 
them. Second, the existing studies are restricted to problems in which 
the system level simulation model is characterized mathematically. Such 
a mathematical description is neither available nor possible especially 
for evaluating the performance of nuclear systems subjected to external 
hazards. In addition to these restrictions, it is important to note that ex- 
isting approaches do not identify whether or not an improvement in the 
validation of a given component or subsystem is important/critical with 
respect to system level performance. 

This paper focuses on exploring a novel performance-based risk- 
informed validation approach that aspires to be rational, efficient, and 
quantitative in nature. The intent of the proposed approach is to pro- 
vide a quantitative assessment of validation for a system-level simu- 
lation model based on component-level validation information. It uses 
performance-based criteria to judge the efficacy of a particular valida- 
tion and a risk-informed framework to determine whether additional 
validation of a certain component or subsystem is needed or not. The 
applicability and effectiveness of the proposed approach is explored in 
the context of a structural system subjected to a natural hazard due to 
an earthquake. Yet, the approach is quite generic in nature and is appli- 
cable to a variety of validation problems. 

2. Performance-based probabilistic risk assessment (PRA) 

In the current methodology, the overall risk (i.e. annual probabil- 
ity of occurrence or failure) for an individual hazard is evaluated by a 
convolution of hazard curve and the corresponding fragility as follows: 

𝑃 𝑓 = ∫ 𝑃 𝑓 |𝜆 ⋅ ||||𝑑𝐻 ( 𝜆) 
𝑑𝜆

||||𝑑𝜆 (1) 

in which 𝜆 is a hazard intensity parameter , P f | 𝜆 is the fragility curve, and 
H ( 𝜆) represents hazard curve. The hazard curve expresses the probabil- 
ity of annual exceedance in a domain of the intensity measure used for 
characterizing the external hazard. The fragility curve for basic events 
is obtained by using empirical, experimental, and/or numerical simula- 
tion data and represents the conditional probability of failure under each 
hazard’s intensity. The system-level risk is calculated by employing ei- 
ther a series-parallel system as a simplistic representation of the system 

or by conducting a fault tree analysis in which the events are assumed 
to be statistically independent, mutually exclusive, and collectively ex- 
haustive. In realistic applications, fault trees are used in conjunction 
with event trees to conduct an in-depth risk analysis. In recent years, 
researchers have recommended improving such a logic tree approach 
by utilizing Bayesian networks [28–30] . A Bayesian network based ap- 
proach can be quite powerful in probabilistic risk assessment particu- 
larly in the context of multi-hazard risks [31–33] . Unlike a logic tree 
based approach in which the basic events are considered to be statisti- 
cally independent, a Bayesian network can consider statistical correla- 
tions between basic events which is particularly true for multi-attribute 
multi-hazard risk assessments [33] . A Bayesian approach can directly 
incorporate probabilistic gates, correlated events, and multi-state vari- 
ables. It can also accommodate additional evidence through a unified 
single formulation. 

Probabilistic hazard analysis: In order to develop a hazard curve, the 
hazard is characterized in terms of an engineering design parameter. 
For example, probabilistic seismic hazard analysis (PSHA) focuses on 
quantifying uncertainties in the sources, size, distance, and ground mo- 
tion characteristics of future earthquakes and incorporating this infor- 
mation to produce a distribution of possible ground motions that can 
occur at a site of interest. The end result of PSHA is represented by 
seismic hazard curves where the annual rates of exceedance are plot- 
ted against a ground motion intensity parameter such as peak ground 
acceleration (PGA) or spectral acceleration (SA). A detailed description 
of PSHA is given in McGuire [34] . The US Geological Survey (USGS, 
http://earthquake.usgs.gov/hazards/products/ ) provides hazard infor- 
mation and hazard curves at any site of interest within the US. 

Performance-based fragility assessment: The fragility of a structure, sys- 
tem, or component (SSC) is defined as the conditional failure probabil- 
ity, P f| 𝜆, to attain or exceed a specified performance function, G , under 
a given measure of specific intensity parameter 𝜆. Mathematically, 

𝑃 𝑓 |𝜆 = 𝑃 ( 𝐺 < 0 |𝜆) (2) 

G is a function of the random variables representing uncertainties in 
material properties, physical behavior, mechanistic models, and loading 
conditions. It can be described in a simplistic form as: 

𝐺 ( 𝑆, 𝑅 ) = 𝑆 − 𝑅 (3) 

where S represents the “Strength ” or “Capacity ” corresponding to 
the specified loading condition and R represents the “Response ” or 
“Demand ” corresponding to the given hazard intensity parameter. 
Eq. (3) can be written by various forms such as physics or mechanics 
based models, experimentally obtained data, empirical relations, simu- 
lations, or a combination of these. It can then be solved in many dif- 
ferent ways such as Monte Carlo simulation, first/second order relia- 
bility methods, random vibration based approach, statistical inference 
approach, etc. In most implementations, the fragility curves are repre- 
sented as the cumulative distribution function for a lognormal model. 
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