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ARTICLE INFO ABSTRACT

In this paper, a new kind of sensitivity indices based on the principal component analysis (PCA) is proposed to
measure the effects of input variables on multivariate outputs. Through PCA, the outputs are projected onto a
new coordinate system (eigen space), which is constructed by the eigenvector (principal components). The
existent sensitivity indices based on PCA focus on the variance of principal components, which can be
considered as a magnitude of the uncertainty in the corresponding coordinate axes. In addition, the direction of
the coordinate axes in the eigen space also contains another part of uncertainty of outputs (the direction of the
uncertainty). The new sensitivity indices measure the effect of input variables on the direction of the coordinates
axes through the angles between the unconditional and conditional eigenvectors. Thus, the new sensitivity
indices can reflect different effect of input variables on the output compared to the existent sensitivity indices.
The results of three numerical examples and an environmental model show the difference between the new
sensitivity indices and the existent sensitivity indices. Since the new sensitivity indices measure the effects of
input variables on the multivariate outputs from a different perspective compared to the existent sensitivity
indices, they should be mutually complementary to each other.
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1. Introduction

Uncertainties are often encountered in the practical systems and
models [1-3], which lead to uncertain performance. Uncertainty
analysis is widely used to help decision makers to understand the
degree of confidence of the model results so that they can know the
degree of confidence in the decision they made and assess the risk
[4,5]. However, the results of uncertainty analysis can’t provide
information on how the uncertainty of the output can be apportioned
to the uncertainty of inputs, and therefore, on which factors to devote
data collection resources so as to reduce the uncertainty most
effectively [6,7]. Global Sensitivity analysis (GSA) is a scientific analysis
tool to solve this problem, which can apportion the uncertainty of
model output to different sources of uncertainty in the model input
[8,9]. Thus, it can help researchers find the important model inputs,
i.e., the inputs which have a significant influence on output [10]. More
details of GSA can be found in the reviews of other researchers, such as
reference [11]. GSA has been widely used in risk assessment and
decision making. For example, Saltelli & Tarantola [12,13] used GSA
on the safety assessment for nuclear waste disposal, Herman et al.
[14,15] used GSA on the hydrologic models to detect the sensitive
factors affecting the model performance, then the model performance
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can be improved more efficiently, Frey & Patil [16,17] used GSA for
the food safety risk assessment, Cuntz et al. [18] applied GSA through
the sequential screening for the identification of non-informative
hydrological model parameters with low computational cost,
Borgonovo & Peccati [19] used GSA techniques in the investment
decisions, Lamboni et al. [20] used GSA for dynamic crop models to
help researchers make better decisions in the growing season of crops.

The traditional GSA methods, such as the elementary effect method
[10,21], variance based method [22-24], derivative based method
[25,26] and moment dependent method [27-29], focus on the model
with single output. However, practical models with multivariate out-
puts are widely used for risk assessment and decision making in
practical engineering [30]. A direct way to perform sensitivity analysis
for models with multivariate outputs is to perform sensitivity analysis
for each output separately. However, this way is just a repetition of the
traditional GSA and it ignores the correlations among the multivariate
outputs. Thus, it may be insufficient to perform sensitivity analysis on
each output separately or on a few context specific scalar functions of
the output [31]. In addition, redundant sensitivity indices will be
generated if a strong correlation exists among the outputs, and it is
difficult to interpret the results of sensitivity analysis [32]. It is
recommended in [31] to apply sensitivity analysis to the multivariate
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output as a whole, and criteria and methods need to be developed for
the sensitivity analysis of multivariate outputs.

Campbell et al. [33] proposed that sensitivity analysis of multi-
variate outputs can be carried out by (1) expanding the multivariate
outputs in terms of an appropriate set of basis function, (2) performing
sensitivity analysis on most informative components separately.
According to this method, researches can focus on a few components
rather than the whole outputs. Lamboni et al. [31] utilized the principal
component analysis (PCA) [34,35] to perform the expansion of the
outputs and carried out sensitivity analysis on the principal compo-
nents. In addition, they also proposed generalized sensitivity indices
for the multivariate outputs as a whole. Gamboa et al. [36] defined
generalized Sobol’ sensitivity indices for multivariate outputs based the
decomposition of covariance matrix of model outputs. This method
doesn’t need spectral decomposition compared to the output decom-
position method [31], thus it is more computational efficient. However,
the output decomposition method can focus on the most informative
components, which can reduce the output dimension. Garcia-Cabrejo
et al. [32] pointed out that the output decomposition method and the
covariance decomposition method are equivalent if the first K eigen-
vectors in the principal component decomposition preserve the original
variance of outputs.

The covariance decomposition method [36] provides a generalized
form of the Sobol indices [24], which can be regarded as measuring the
effects of inputs on each outputs and then taking the weighted average
of these effects to measure the effects of inputs on the whole output.
However, it just consider the variance of each output and ignore the
covariance among the outputs. For the PCA-based output decomposi-
tion method [31], the original outputs are projected into a new
coordinate system (eigen space), which is constructed by the eigenvec-
tors (principal components). Then, the influence of the model inputs on
the variance of the principal components measures the importance of
each input, and the weighted average is taken to measure the effects of
inputs on the whole output. Since the principal components are
mutually orthonormal to each other, there are no covariance among
them, i.e., it is enough to just consider the variance of each component.
Through the PCA decomposition, the uncertainty of model outputs are
transformed into the principal components. The variance of the
principal components just contains a part of the original uncertainty,
and the direction of the eigenvectors contains another part of the
uncertainty. Thus, measuring the effect of model inputs on the
direction of the eigenvectors will be complementary to the existent
sensitivity analysis method.

In this work, a new kind of sensitivity indices is proposed which
measure the importance of model inputs through the influence of the
inputs on the direction of the transformed output space obtained by
PCA. PCA is multivariate statistical method [34,35], which can trans-
form the original variables into a set of new orthogonal variables which
are sorted according to their variance. Through the principal compo-
nent decomposition, a set of eigenvectors (basis vectors), representing
the directions of the dimensions in the transformed output space, can
be obtained. The new kind of sensitivity indices, which contains the
sensitivity indices on the principal components and the generalized
sensitivity index, measures the effects of inputs on the outputs through
the angles between the unconditional eigenvectors and the conditional
eigenvectors.

The rest of this paper is organized as follows: Section 2 reviews the
basic theory of PCA and the original sensitivity analysis method for
multivariate outputs based on PCA. The new sensitivity index is defined
in Section 3, followed by the estimation of the new sensitivity indices.
Section 4 compares the new sensitivity indices with the original
sensitivity indices through two numerical examples. A hydrological
model is studied in Section 5 to measure effects of the uncertainties of
different parameters on the model performance. Discussion and
conclusion are given in Section 6.
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2. Original sensitivity analysis method for multivariate
outputs based on principal component analysis

Consider the model response function represented as Y = g(X),
where X = (X;, X, ..., X,) represents the n-dimensional vector of model
input variables, Y = (¥;, ¥, ...,Y,,) represents the m-dimensional vector
of model output variables. Input variables are independent to each
other and are characterized by the probability density function (PDF)
S, Gl =1, 2,...,n).

2.1. Principal component analysis

Principal component analysis (PCA) is a widely used multivariate
statistical method, which can transform the original variables into a set
of new orthogonal variables, so that most information is contained in
the first few components with the largest variance [34,35].

PCA can be performed through the eigenvalue decomposition of the
covariance matrix of the outputs. First, center the outputs Y by
subtracting the mean and denote the centered outputs as Y, i.e.,

Y=Y - py 1)

where p, is the mean vector of the outputs Y.
Then, perform the eigenvalue decomposition of the covariance
matrix, i.e.,

Ty = TAI7 )

where Zy is the covariance matrix of outputs Y, A = diag (1, A, ..., 4n)
is the diagonal eigenvalue matrix (4 > 4 > --- > 1,, are the eigenva-
lues), T = (¥, ¥»-...¥,) is the eigenvector matrix (y(i=1,2,...,m)
represent the normalized and mutually orthogonal eigenvectors asso-
ciated to the eigenvalues). Then the centered outputs Y¢ are trans-
formed into independent variables H through

H=YT (3)

where H = (H), H,, ...,H,;,) contains the principals components, which
are orthogonal to each other.H;(k = 1, 2,...,m) is centered with var-
iance A, i.e,V(H)=EMH}) =X4. It can also be gotten that

Z‘:l A = trace (Zy). Through Eq. (3), Y¢ can also be expressed by H as

Y¢ = HI' )
where I'" represents the inverse matrix of I'. Thus, the original outputs

Y can be expanded by the mutually orthogonal principal components in
H by

Y = py + HI" ®)

Usually, the first K principal components containing the most
variance of the original outputs are selected, then Y can be approxi-
mately expressed as

Y = py + HxI'y (6)

where Hg contains the first K principal components of H, Iy denotes
the first K eigenvectors in I'.

2.2. Original sensitivity indices based on principal component
analysis

By combining the principal component decomposition of model
outputs Y in Eq. (6) and the analysis of variance (ANOVA) decom-
position [37], Lamboni et al. [31] defined a set of sensitivity indices on
the principal components H,(k = 1, 2,...,m) and generalized sensitivity
indices on the whole multivariate outputs.

The first order sensitivity index of model input variable X; on the
kth principal component H; of the multivariate outputs Y is defined as
[31]

Shiy = Yix
7 @)
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