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A B S T R A C T

The bio-chemo-mechanical model has many applications in modelling cell contractility. In simulations this
model usually is coupled to the continuum mechanics of the cell by defining a large number of directions for
stress fibres at each point. In this paper, another representation for coupling the biochemical processes in the bio-
chemo-mechanical model is introduced. Using a quadratic form to represent the angular dependency of the
activation level, the model's number of degrees of freedom is significantly reduced. Numerical results similar to
the original representation are obtained while a significant improvement in computation time is achieved.

1. Introduction

Cell-biomaterial surface interactions are decisive for the acceptance,
longevity and therefore the success of an implant (Matschegewski et al.,
2010).

Plenty of experimental studies on this interaction have been made
and many mathematical descriptions have been proposed. Examples of
numerical models are those introduced by Storm et al. (2005); Satcher
and Dewey (1996); Mohrdieck et al. (2005); Nelson et al. (2005) and
Sanz-Herrera et al. (2009).

The bio-chemo-mechanical model as proposed by Deshpande et al.
(2006) is known to be advantageous to other numerical models as it
includes bio-chemical processes and can efficiently explain many effects
such as the strong dependence of the forces generated by the cells on
the substrate compliance as well as the influence of boundary condi-
tions on the orientation and formation of stress fibres. The im-
plementation of this model involves solving large systems of differential
equations.

In this work, we present an alternative representation for coupling
the BCM model to existing material models in continuum mechanics, so
that the size of the system and hence the computation time for the si-
mulation of the mechanical behaviour of cells is significantly reduced.

2. The bio-chemo-mechanical model

Unlike models which consider cells as a system of discrete actin

filaments, the bio-chemo-mechanical (BCM) model is derived based on
continuum mechanics.

For this, the main assumption is that the fine scale network of fibres
exists on a length scale much smaller than the cell dimensions and that
at any point within the cell stress fibres can form in any direction with
equal probability.

Moreover, the actin and myosin in the cell is assumed to have a
concentration high enough such that the activation of the stress fibres
in each direction is not limited by their local availability (Deshpande
et al., 2006, 2007).

Then, the key idea of the BCM model is the inclusion of an active
stress tensor describing the formation of actin filaments such that the
stress in the cell is given by:

= +S S S ,total active passive (1)

where Spassive is the passive stress by the cell material. Usually an elastic
material model is used for the interior of the cell and Spassive becomes
the second Piola-Kirchhoff stress =S E:passive . Here,  is the stiffness
tensor, E is the Green-Lagrange strain tensor, which is applicable for
large deformation of the cell. The colon (: ) denotes the double con-
traction of the two tensors. Recall that the second Piola-Kirchhoff stress
is a transformation of the Cauchy stress into the reference configuration
and is a symmetric tensor.

The active stress Sactive results from the formation of stress fibres due
to the activation. The BCM model (Deshpande et al., 2006) is defined
for a single stress fibre and is described by three equations.
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First, by ignoring the details of the signalling processes, a simple
exponential function = − ∈C t t θ( ) exp( / ) [0, 1] is used to represent the
time dependency of the level of an external signal C t( ). Here θ is the
decay constant of a chemical compound, t is the time measured from
the instant of the most recent release of a signal.

Second, a non-dimensional activation level ∈η t( ) [0, 1] is in-
troduced to describe the remodelling of the actin cytoskeleton under
external stress. The differential equation for the time evolution of η t( ) is
established based on experimental observations as:
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where the term − η
Ck

θ
[1 ] f expresses the rate of stress-fibre-formation

dependent on the signal C t( ) and is controlled by the constant kf .
Similarly, the second term on the right hand side is a non-negative

number that expresses the rate of stress fibre dissociation. It depends on
the current tension relative to the isometric tension σ0 and is controlled
by the constant kb.

Here, σ0 is the maximum tension allowed in the stress fibre corre-
sponding to the activation level η and is given as =σ ησ0 max where σmax
is the maximum tension at =η 1, that is, when the stress fibre is fully
activated.

Finally, a linearised Hill equation (Hill, 1938) is used to describe the
relationship between tension σ and the lengthening / shortening strain
rate ε̇ as:
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where kv is the fractional reduction in fibre stress upon increasing the
shortening rate relative to ε̇0. This linearised relation is described in
Han and Sniadecki (2011) and Rodriguez et al. (2013). Compared to the
modified models from the appendix to (Deshpande et al., 2007) there is
no significant difference in the displacement.

Modelling the cell contractility using the BCM model and the for-
mulation in structural mechanics involves defining the possible

directions for stress fibres at each point in the cell. Then, the strain rate
in each stress fibre can be related to the material strain rate Ė and the
active stress tensor can be obtained by accumulating the active stresses
in all fibres.

The spatial dimensions of the model are dependent on the specific
problem under study. If it may be assumed that the cell thickness is
small compared to the other two dimensions and that only in-plane
contractility occurs, then a 2D finite element analysis is sufficient. In
general, simulations in 3D should be performed.

Simulations in 2D. At each material point in the cell, the stress fibres
can equally form in any direction. The orientation of each stress fibre is
determined by the angle ϕ between the fibre and the e1 axis, as shown in
Fig. 1a. The unit vector associated with this direction is

= +m e eϕ ϕ ϕ( ) cos( ) sin( )1 2.
The strain rate ε̇ of the stress fibre in the direction m ϕ( ) is calculated

from the material strain rate Ė as:

= + +ε E ϕ E ϕ E ϕ˙ ˙ cos ˙ sin ˙ sin 2 .11
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and the components of the average active stress tensor in Cartesian
coordinates are obtained as:
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where σ is the tension in the stress fibre (in Eq. (3)).
It should be noted that the unit vector m ϕ( ) and hence the com-

ponents Sij
active of the active stress are defined in the reference config-

uration, so the formulation is applicable for large deformations of the
cell.

The active stress tensor is written as:
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For defining this active stress in a finite element model of the con-
tinuum mechanics, a set of Nd directions, where Nd is a comparatively
large number, is defined by equally spacing Nd direction angles

∈ −ϕ π π[ /2, /2]. The integral above is then computed numerically by
using the trapezoidal rule over these Nd sampling points (Deshpande
et al., 2007).

Simulations in 3D. Also in the 3D model the stress fibres are assumed
to be able to form in any direction. The directions are determined by a
pair of angles ω ϕ( , ) as in Fig. 1c. The unit vector corresponding to the
angles ω ϕ( , ) is: = + +ω ϕ ω ϕ ω ϕ ωm e e e( , ) sin( )cos( ) sin( )sin( ) cos( ) .1 2 3

The strain rate ε̇ in the fibre associated with ω ϕm( , ) is related to the
material strain rate by:
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The components of the active stress tensor in Cartesian coordinates
system are:
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here S denotes the Surface of a Sphere and |S| it's surface.
In practice, the orientations of stress fibres are determined by dis-

tributing Nd unit vectors on a 3D sphere such that the minimum dis-
tance from a vector to its neighbours is maximised (Ronan et al., 2012).
The active stress can then be computed as an average value over all
directions:
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Measure for actin distribution When the activation level in the cell is

Fig. 1. Stress fibres are assumed to be able to form at any point in any direction. In 2D (a,
b), a direction is characterised by an angle ϕ, while in 3D (c, d), a pair of angles ω ϕ( , )
determines the direction.
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