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a b s t r a c t

Buckling analyses of laminated truncated conical shells subjected to external hydrostatic compression
are carried out by employing the Abaqus finite element program. The critical buckling loads of these
truncated conical shells with a given material system are maximized with respect to fiber orientations by
using the golden section method. Through parametric studies, the influences of the end condition, shell
thickness, shell length, shell radius ratio and cutout size on the optimal buckling loads, the associated
optimal fiber orientations and the associated buckling modes are demonstrated and discussed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The applications of fiber reinforced composite laminated ma-
terials in offshore and marine industries have increased rapidly in
recent years. These composite structures are commonly subjected
to compression in service, which may cause buckling problems
[1e10]. The truncated conical shell structures are widely used in
offshore platforms, pipelines, submarines and underwater vehicles,
which may be subjected to hydrostatic compression. Hence, the
buckling of laminated truncated conical shells under hydrostatic
compression is of current interest to engineers engaged in offshore
and marine engineering practices.

The buckling resistance of laminated truncated conical shells
highly depends on end conditions, ply orientations [11e23], and
geometric variables such as shell thicknesses, shell lengths, shell
radius ratios, cutouts [11,12,14e30] and stiffeners [31e35]. There-
fore, for laminated truncated conical shells with a given material
system, geometric shape and end condition, the proper selection of
appropriate lamination to realize themaximum buckling resistance
of the truncated conical shells becomes a crucial problem [36e42].
However, up to present, most optimization works on conical shells
have been focused on isotropic materials [43,44] and very few
concentrated on laminated materials [41].

Structural optimizations have been popular research areas [45]
and lots of them have been focused on laminated materials [46].
There are many optimization methods available today, such as
sequential linear programming [37,38,40,42], nonlinear program-
ming [47,48] and reliability-based optimization method [49e52].
Among them, the golden section method [47,48] is simple, efficient
and has been successfully applied to many engineering problems.
Hence, it is selected in this investigation to perform optimization
analyses for the composite truncated conical shells.

In this investigation, optimization of fiber-reinforced laminated
truncated conical shells to maximize their critical buckling loads
with respect to fiber orientations is performed by using the golden
section method. The critical buckling loads of the laminated trun-
cated conical shells are calculated by the bifurcation buckling
analysis implemented in the Abaqus finite element program [53]. In
the paper, the constitutive equations for fiber-composite laminate,
bifurcation buckling analysis and golden section method are briefly
reviewed. Then the influences of the end condition, shell thickness,
shell length, shell radius ratio and cutout on the optimal buckling
loads, the associated optimal fiber orientations and the associated
buckling modes of laminated truncated conical shells are pre-
sented. Finally, important conclusions obtained from this study are
given.

2. Constitutive matrix for fiber-composite laminae

In the finite element analysis, the laminated truncated conical
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shells are modeled by eight-node isoparametric shell elements. For
each node, there are three degrees of freedom for displacements
and three for rotations. The reduced integration rule together with
hourglass stiffness control is employed to formulate the element
stiffness matrix [53].

The stress-strain relations for a lamina in the material coordi-
nate (1,2,3) (Fig. 1) can be written as
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where fs0g ¼ fs1; s2; t12gT, ft0g ¼ ft13; t23gT, fε0g ¼ fε1; ε2;g12gT,
fg0g ¼ fg13; g23gT: The a1 and a2 in Eq. (2) are shear correction
factors, which are calculated in Abaqus by assuming that the
transverse shear energy through the thickness of laminate is equal
to that in unidirectional bending [53,54].

The constitutive equations for the lamina in the element coor-
dinate (x,y,z) (Fig. 1) then become

fsg ¼ ½Q1�fεg; ½Q1� ¼ ½T1�T
�
Q 0
1
�½T1� (3)

ftg ¼ ½Q2�fgg; ½Q2� ¼ ½T2�T
�
Q 0
2
�½T2� (4)

½T1� ¼
2
4 cos2 q sin2 q sin q cos q

sin2 q cos2 q �sin q cos q
�2 sin q cos q 2 sin q cos q cos2 q� sin2 q

3
5; ½T2�

¼
�

cos q sin q
�sin q cos q

�

(5)

where fsg ¼ fsx; sy; txygT ; ftg ¼ ftxz; tyzgT ; fεg ¼ fεx; εy;gxygT ;
fgg ¼ fgxz;gyzgT and q is measured counterclockwise about the z
axis from the element local x-axis to the material 1-axis. While the
element x axis is in the longitudinal direction of the truncated
conical shell, element y and z axes are in the circumferential and
the radial directions of the truncated conical shell. Let
fεog ¼ fεxo; εyo;gxyogT be the in-plane strains at the mid-surface of
the laminate section, fkg ¼ fkx; ky; kxygT the curvatures, and h the
total thickness of the section. If there are n layers in the layup, the
stress resultants, fNg ¼ fNx;Ny;NxygT ; fMg ¼ fMx;My;MxygT and
fVg ¼ fVx;VygT , can be defined as
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where zjt and zjb are the distance from the mid-surface of the
section to the top and the bottom of the j-th layer respectively. The
[0] is a 3 by 2 matrix with all the coefficients equal to zero.

Fig. 1. Material, element and structure coordinates of laminated truncated conical
shells. Fig. 2. The golden section method.
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