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a b s t r a c t

This paper presents refined one-dimensional models with node-dependent kinematics. The three-
dimensional displacement field is discretized into two domains, namely cross-section domain and axis
domain. The mechanical behaviors of the beam can be firstly captured by the cross-section functions
then interpolated by the nodal shape functions of the beam element. Such a feature makes it possible to
adopt different types of cross-section functions on each element node, obtaining node-dependent ki-
nematic finite element models. Such models can integrate Taylor-based and Lagrange-type nodal kine-
matics on element level, bridging a less-refined model to a more refined model without using special
coupling methods. FE governing equations of node-dependent models are derived by applying the
Carrera Unified Formulation. Some numerical cases on metallic and composite beam-like structures are
studied to demonstrate the effectiveness of node-dependent models in bridging a locally refined model
to a global model when local effects should be accounted for.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Application of composite materials has attracted significant
attention over the past several decades to improve the structural
efficiency. However, the anisotropy of multi-layered structures
makes it computational costly to capture their responses under
external loads.

One of the most important issues in numerical modeling is
saving computational costs. A major approach is only using refined
higher-order models in regions where sophisticated effects have to
be described, while employing less refinedmodels in the rest of the
structure. Some noticeable methods have been proposed to couple
different models. Slender structures can be approximated with
beam models. The most classical beam model is Euler-Bernoulli
beam, which applies to isotropic beam-like structures with high
slenderness ratio. For stubby beam-like structures the shear effects
can be captured with Timoshenko [1] beam model. However, to
better capture the behavior of composite laminated beams, more
reliable models are needed.

Over the last several decades, many refined beam models have
been proposed. To consider the deformation of cross-sections,

Vlasov [2] proposed the use of warping functions for beam
models, this approach has been applied by Friberg [3], Ambrosini
et al. [4] and Mechab et al. [5] to capturing the key phenomenon of
cross-sectional warping of thin-walled structures. Kim and Lee [6]
recently applied a hybrid model based on Euler-Bernoulli and
Vlasov models to the study of thin-walled beam including func-
tionally graded materials. Schardt [7] proposed Generalized Beam
Theory (GBT) by expanding the displacement field with reference
to the mid-plane of the cross-section thin-walled beam. GBT was
also adopted by Davies and Leach [8] and Davies et al. [9], and then
further extension to the analysis of composite structures was pro-
posed by Silvestre and Camotim [10]. Berdichevsky [11] proposed
the Variation Asymptotic Method (VAM) which uses a character-
istic cross-section parameter to construct an asymptotic expansion
of the solution, this approach was also adopted by Giavotto et al.
[12]. Volovoi et al. [13], Yu et al. [14] and Yu and Hodges [15] further
applied VAM to composite beam-like structures.

Carrera [16] and Carrera et al. [17] proposed a newmethodology,
which is known as Carrera Unified Formulation (CUF), as a new
framework to construct 1D and 2Dmodels for the analysis of multi-
layered composites. For 1D (beam) models, CUF introduces func-
tions Ftðx; zÞ (based either on series expansion or interpolation
polynomials) to approximate a cross-section. Numerical accuracy
can be improved by increasing the number of expansions in a
convenient way as demonstrated by Carrera et al. [18], while* Corresponding author.
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cumbersome derivation of governing equations can be avoided
thanks to the introduction of Fundamental Nucleus, FN, which is the
core unit of the structural stiffness matrix. Such an advantage leads
to a variety of models with variable kinematics, including both 1D
models by Carrera et al. [19] and 2D models by Cinefra et al. [20]
and Cinefra and Valvano [21].

The above-described refined models improve the numerical
accuracy at the expense of increasing the computational costs. For
example, CUF-based FE models increase the number of degrees of
freedom at each node to better approximate the structural re-
sponses. Composite material may undergo to local effects as
delamination [22], cracks [23] or local buckling [24], these phe-
nomena require accurate models to be predicted. If refined models
are only used in specific regions with sophisticated effects (such as
high gradients of stress) to be captured leaving the rest of the
structure modeled with lower-order models, a compromise be-
tween accuracy and consumption can be reached. The coupling of
two computational domains has attracted significant attention,
leading to various global-local analysis methods.

To enforce the compatibility of the displacements at the inter-
face of the two domains, Prager [25] used a set of Lagrange mul-
tipliers, which was further extended to beam models in the
framework of CUF [26]. Aminpour et al. [27], and Ransom [28]
employed a spline method to couple two domains with different
meshes. Similar approaches in the framework of three-field
formulation were also reported by Brezzi and Marini [29]. Blanco
et al. [30,31] presented an eXtended Variational Formulation (XVF)
to couple non-matching kinematic models based on Lagrange
multiplier method, which was also adopted by Wenzel et al. [32].

Fish et al. [33] developed an accelerated multi-grid method to
speed up the iterative process when sharing the information be-
tween coarse and finemeshes. Fish [34] put forward s-version finite
element method, which improves the accuracy in the local domain
by superimposing additional elements with higher-order hierar-
chical kinematics on the global model, and continuity of displace-
ment can be guaranteed by imposing homogeneous boundary
conditions on the superimposed field. Park et al. [35] proposed a
similar method which also refines the local mesh without using
transition region nor multi-point constraint. The s-version FE
method was also used in combination with h-version [36] and p-
version models [29], leading to simultaneous multiple model ap-
proaches, as summarized by Reddy and Robbins [37] and Reddy
[38].

By introducing an overlapping zone to bridge the two domains,
Ben Dhia [39] and Ben Dhia and Rateau [40] suggested Arlequin
method to impose compatibility within the overlapping domain
with Lagrange multipliers. Such an approach has also been imple-
mented in CUF-based models by Biscani et al. for beammodels [41]
and plate models [42,43]. Hu et al. [44,45] applied Arlequin method
in the linear and non-linear multi-scale analysis of sandwich
structures. He et al. [46] adopted Arlequin method to bridge low-
and high-order models constructed in the framework of CUF, and
Constrained Variational Principle (CVP) was used to derive beam
elements for layered structures with independent kinematic
description in each layer.

Some special techniques that can be used to mix elements with
different mesh refinement or of different types have also been
implemented in commonly used commercial software. In Rigid
Beam Element (RBEi) and Multi-Point Constraints (MPCs) (such as
in NX NASTRAN), the dependent degrees of freedom are expressed
as a linear function of the independent degrees of freedoms. Such
approaches can be used to connect two sets of incompatible ele-
ments in simultaneous analyses. ABAQUS provides so-called “Shell-
to-solid coupling” which allows for a transition from 2D modeling
to 3D modeling. This method uses a set of internally defined

distributing coupling constraints to connect nodes along the edge
of a 2D model to a set of nodes on a solid surface. Submodeling is a
two-step technique, in which the local model is driven on the
boundaries nodes by the displacement field obtained with an
aforehand global model. The drawback of such an approach is that
the change of stiffness of the local model cannot be updated in the
global model. A superelement can be treated as an individual
element that is defined by grouping a set of elements, and
condensing the so-called internal degrees of freedom. Such a tech-
nique suits the analysis of large-scale structures and parallel
computation. All these approaches adopt special coupling functions
on the interfaces between the local and the global model or employ
special matrix operation techniques. Meanwhile, at least two sets of
separately meshed models are needed.

CUF-type displacement functionsmake it possible to implement
node-dependent kinematic FEmodels.When it comes to refined 1D
(beam) models, cross-section functions defined on different nodes
can be integrated into the same 1D element by the nodal
Lagrangian shape functions. By the introduction of fundamental
nucleus, as has been elucidated in Ref. [47], the governing equation
can be derived and expressed in a compact way. Such a method-
ology permits the possibility of connecting to domains with
different kinematics by commonly used nodal shape functions
without using any specially designed coupling methods, which
reduces the complexity of the numerical methods significantly.
Such an approach was firstly presented by Carrera and Zappino
[48], then extended to the global-local analysis of laminated com-
posite plates by Zappino et al. [49] as well as [50]. As a simplified
case, through-the-thickness variable kinematics was discussed by
Dehkordi et al. [51] for sandwich plates, and by Carrera et al. [52]
for laminated shells.

In the present work, node-dependent kinematic one-
dimensional models are applied to construct global-local FE
models, and special attention is paid to the analysis of composite
structures where the use of refined models is mandatory to obtain
accurate results. The governing equations for beam models with
node-dependent kinematics are firstly derived by applying Prin-
cipal of Virtual Displacement (PVD). Numerical results on thin-
walled isotropic beam and multi-layered composite beam, as well
as a composite thin-walled beam are reported.

2. Preliminaries

Consider a slender structure as shown in Fig.1, inwhich the axial
direction is along the y direction, the displacement vector can be
expressed as:

uT ¼ �
uxðx; y; zÞ;uyðx; y; zÞ;uzðx; y; zÞ

�
(1)

where ux;uy and uz are the three displacement components. The

Fig. 1. Reference system of a laminated beam model.
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