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a b s t r a c t

The excitation frequencies of parametric vibration of laminated non-homogeneous orthotropic conical
shells (LNHOCSs) under axial load periodically varying with time, are determined using the classical shell
theory (CST). The basic equations are found using the Donnell-Mushtari shell theory and reduce to the
Mathieu-Hill type differential equation, in which the instability is examined by the Bolotin method. To
validate of current results was made a comparison with the previous studies. The effects of stacking
sequences, axial load factors, non-homogeneity, as well as the variation of geometric characteristics on
the backward and forward excitation frequencies (BFEFs) of conical shells are studied in detail.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Layered conical shells are widely used in the aerospace and
marine industries due to advantages such as high rigidity to weight
and durability, as well as low operating costs. Layered shells can be
subjected to dynamic loads under various operating conditions.
Thus, the vibration behavior of layered conical shells under dy-
namic loading is critical for safety and reliability. Among the dy-
namic problems have been widely studied the free vibrations of
homogeneous multilayer conical shells and there are many studies
in the literature [1e24].

Modern laminates are inhomogeneous with heterogeneities
ranging from a nanoscale to a macroscale [25]. One of the areas of
interest is the study of the behavior of the mechanical properties of
inhomogeneous layered shells under dynamic periodic loading.
Compared to laminated homogeneous shells, the adoption of
continuous change of material properties of the layers can provide
important benefits. Indeed, the increase in the number of
constructive variables extends the possibilities of advanced com-
posite materials, as well as stability and vibration behaviors may be
significantly improved. The first basic knowledge on the changes of

the material properties is given in the works of Lomakin [26] and
Khoroshun et al. [27]. Following these works, numerous studies in
this subject have been published in the literature [28e39].

The studies on the parametric vibration of laminated shells are
relatively scarce and most of these works are devoted laminated
cylindrical shells. One of first study on the solution of the para-
metric vibration of laminated anisotropic shells is proposed by
Goroshko and Emelyanenko [40]. The instability zones of laminated
orthotropic cylindrical shell under periodic loads are presented by
Argento and Scott [41,42]. The dynamic instability of layered shells
under different form of time dependent loads have analyzed by Liao
and Cheng [43,44], Lam and Loy [45], and Ng and Lam [46]. A
comprehensive bibliography of papers on the parametric vibration
of structural elements from 1987 to 2005, are presented by Sahu
and Datta [47]. The dynamic instability of layered composite plates
and cylindrical shells subjected to uniform and non-uniform axial
loads has been studied by Fazilati and Ovesy [48,49]. The dynamic
and parametric instability of composite panels is investigated by
Dey and Ramachandra [50] and Panda et al. [51], respectively. Dy-
namic instability analysis for S-FGM plates embedded in Pasternak
elastic medium using the modified couple stress theory is studied
by Park et al. [52]. Lei et al. [53] presented parametric analysis of
frequency of rotating laminated CNT reinforced FG cylindrical
panels. Sahmani and Aghdam [54] studied instability of hydrostatic
pressurized hybrid FGM exponential shear deformable nanoshells
based on the nonlocal continuum elasticity. Li et al. [55]
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investigated nonlocal vibration and stability in parametric reso-
nance of axially moving nanoplate. Akhavan and Ribeiro [56] pre-
sented geometrically non-linear periodic forced vibrations of
imperfect laminates with curved fibers by the shooting method.

The foregoing brief literature survey reveals that excitation
frequencies of parametric vibration of LNHOCS under axial load
periodically varying with time have not been investigated to date.
This task is undertaken in the current study.

2. Basic relations

The LNHOCS which composed of N layers of equal thickness, as
shown in Fig.1. Terms of contact between any two adjacent layers is
absolutely rigid connection that satisfies Kirchhoff-Love hypothesis
for the entire shell. The coordinate system ðOrqzÞ is located on the
mid-surface, inwhich r, z and q are axes in themeridional direction,
normal to the r axis and in the direction perpendicular to the ðSzÞ
surface, respectively. The orthotropy axes are parallel to the r and q.

The elasticity moduli of non-homogeneous material of the layer
(kþ1) are defined as:h
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of the elasticity moduli in the layers and are continuous functions
and m is a variation coefficient of material properties and satisfied
the condition 0 � m � 1 [30]. The density of H orthotropic mate-
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Assume that the LNHOCS under the axial load periodically

varying with time,

n0r ¼ �PðtÞ ¼ �Ps � Pd cosðLtÞ; n0q ¼ 0; n0rq ¼ 0 (2)

where n0r ;n
0
q and n0rq are themembrane forces, Ps and Pd are the static

axial load and the amplitude of the time dependent periodic axial
load, and L is the excitation frequency and t is a time variable [59].

The relationships between stresses and strains for a non-
homogeneous orthotropic lamina (kþ1), in thin conical shells
within the Donell-Mushtari theory can be expressed as
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where t
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rq are the stresses in the layer, ðkþ 1Þ,
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The force and moment resultants of LNHOCSs are expressed by
the following relations:
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The Airy stress function,Jðr; q; tÞ, is introduced by the following
relations [58]:
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3. Basic equations

The basic equations of LNHOCSs taking into account Eqs. (1) and
(2) are expressed as [30,58]:

Fig. 1. (a) The LNHOCS under axial load periodically varying with time and (b) laminate schema.
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