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a b s t r a c t

This paper presents a finite element model based on the first-order shear deformation theory for free
vibration and buckling of functionally graded beams. The present element has five nodes and ten degrees-
of-freedom. Material properties vary continuously through the beam thickness according to the power-law
form. Governing equations are derived with the aid of Lagrange's equations. Natural frequencies and
buckling loads are calculated numerically for different end conditions, power-law indices, and span-to-
depth ratios. Accuracy of the present element is demonstrated by comparisons with the available results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are special composites
formed of two or more constituents with a continuous spatial
variation. They are usually made of a mixture of ceramics and
metals, and can thus resist high-temperature environments while
keeping their strength. Therefore, they have been preferred in
different applications in aerospace, marine, mechanical, and civil
engineering. Increasing demand to FGMs necessitates to well un-
derstand the mechanical behavior of such structures.

Compared to functionally graded plates and shells, research on
functionally graded beams (FGBs) are relatively less. Bending,
buckling and vibration problems of FGBs were solved by different
analytical and numerical methods based on various beam theories.
Among analytical works, we can mention the followings: Aydogdu
and Taskin [1] investigated free vibration of simply-supported FGB
based on classical, parabolic and exponential shear deformation
theories. Sina et al. [2] developed a novel beam theory different
from the classical first-order shear deformation theory to analyze
free vibration of FGBs. They assumed the lateral normal stress of the
beam is zero. Thai and Vo [3] studied bending and free vibration of
FGBs based on various higher-order shear deformation theories.
They took into account higher-order variation of transverse shear
strain through the depth of the beam with satisfying stress-free

boundary conditions. Nguyen et al. [4] developed the first-order
shear deformation theory for statics and free vibration of axially
loaded FGBs with rectangular cross-section. They derived the
improved transverse shear stiffness from the in-plane stress and
equilibrium equation, and thus the shear correction factor was
obtained analytically. In the foregoing works, researchers used
Navier's method to solve governing equations. With the aid of the
method of Lagrangemultipliers, Şimşek [5] studied free vibration of
FGBs considering different higher-order beam theories. He also
investigated forced vibration of FGBs under the action of moving
loads [6e8]. A higher-order theory with the assumption of hyper-
bolic distribution of transverse shear stress was proposed by
Nguyen et al. [9] for vibration and buckling analyses of FG sandwich
beams. Li [10] and Li et al. [11] presented a simple and efficient
analytical method for analyzing static and dynamic behaviors of
FGBs based on the theory of elasticity. They derived a single fourth-
order governing equation, and expressed all physical quantities in
terms of the solution of the resulting equation. Li and Batra [12]
derived analytical relations between the critical buckling load of a
FGM Timoshenko beam and that of the corresponding homogenous
Bernoulli-Euler beam subject to axial compressive load. Based on
an analogy between FG orthotropic Saint-Venant beams under
torsion and inhomogeneous isotropic Kirchhoff plates, Barretta and
Luciano [13] proposed an effective solution procedure with no ki-
nematic boundary constraints. Most recently, analytical works
related to problems of FG nanobeams [14e18] have been also
appeared in the literature.
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Finite element method (FEM) is one of the mostly used nu-
merical method in analyses of structures. Some authors developed
different finite element models based on various beam theories in
analyzing FGBs. Chakraborty et al. [19] proposed a beam element
based on the first-order shear deformation theory to study the
thermoelastic behavior of FGBs. They considered the static, free
vibration and wave propagation problems to highlight the differ-
ence of FGM beam with pure metal or pure ceramic beams. Based
on the classical beam theory, Alshorbagy et al. [20] developed a
two-noded, six degrees-of-freedom finite element to investigate
free vibration of FGBs. Their element can be capable of considering
the material graduation in both axial and transversal direction.
Kapuria et al. [21] presented a finite element model based on a
third-order zig-zag theory for dynamic analysis of layered FGBs.
They also gave some experimental results for validation of their
proposed theory. Vo et al. [22] developed a finite element model for
vibration and buckling of FG sandwich beams based on a refined
shear deformation theory. In the formulation, they considered the
bending and shear components of transverse displacement as C1-
continuous whereas the axial displacement is C0-continuous. Most
recently, Vo et al. [23,24] presented a two-noded C1-continuous
beam element with six degrees-of-freedom per node for static,
buckling and vibration analyses of FG sandwich beams based on a
quasi-3D theory. They considered both shear deformation and
thickness stretching effect in the analyses.

This study aims to develop an accurate and simpler finite
element model based on the first-order shear deformation theory
for vibration and buckling of FGBs. Material properties within the
beam vary continuously through the thickness according to the
power-law form. The beam element proposed here has five nodes
and ten degrees-of-freedom. Governing equations of motion are
derived by using Lagrange's equations. Accuracy of the element is
validated through comparisons with the results available for
buckling loads and natural frequencies of FGBs with different end
conditions, power-law indices, and span-to-depth ratios.

2. Theory and formulation

2.1. Material properties

Fig. 1 shows an isotropic, nonhomogeneous elastic beam with
length L and rectangular cross-section of b � h. The x-, y-, and z-
axes are located along the length, width, and height of the beam,
respectively. The beam is loaded by an axial compressive force N at
its ends. The beam is assumed to be composed of a mixture of two
constituents such as ceramic and metal, which are located at its top
and bottom surfaces, respectively. Material behavior obeys Hooke's
law. The gravity is not considered. Material properties vary
continuously through-the-thickness according to the power-law
rule given by

PðzÞ ¼ ðPm � PcÞ
�
z
h
þ 1
2

�k

þ Pm (1)

where k is the non-negative power-law exponent, Pm and Pc are the
corresponding material properties of the metal and ceramic con-
stituents, e.g., Young's modulus E, Poisson's ratio n, and mass den-
sity r, respectively.

2.2. Finite element model

Fig. 2 shows a five-noded beam finite element with four equally
spaced nodes and a node at the middle. It has ten degrees-of-
freedom including three axial, four transversal and three rota-
tional displacements which are measured at neutral axis of the
beam. The nodal displacement vector can thus be given as:

u ¼ fu1 u2 u3 w1 w2 w3 w4 f1 f2 f3gT (2)

where u, w and f are the axial and the transverse displacements,
and the total bending rotation of the cross-sections at any point on
the neutral axis, respectively. Note that f is assumed to be
geometrically unrelated to the slope vw/vx to account for the shear
deformation.

According to the first-order shear deformation theory, the
displacement field can be given by

Uðx; z; tÞ ¼ uðx; tÞ � z fðx; tÞ;
Wðx; z; tÞ ¼ wðx; tÞ (3)

where t denotes time. The strain-displacement relations are given
by

εxx ¼ vU
vx

¼ vu
vx

� z
vf

vx
¼ u;x � zf;x;

gxz ¼
vU
vz

þ vW
vx

¼ vw
vx

� f ¼ w;x � f

(4)

where εxx and gxz are the normal and shear strains, respectively.
ð,Þ;x denotes the derivative with respect to x. Since the material
behavior obeys Hooke's law, the constitutive relations can be
written as

sxx ¼ EðzÞεxx; txz ¼ KGðzÞgxz (5)

where sxx and txz are the normal and shear stresses, respectively. K
is the shear correction factor, E(z) is the Young modulus, and
G(z) ¼ E(z)/[2 (1 þ n(z))] is the shear modulus.

The strain energy of the beam can be given by

U ¼ 1
2

ZL

0

Z
A

ðsxxεxx þ txzgxzÞdA dx (6)

where A is the cross-sectional area of the beam. Substituting Eqs.
(4) and (5) into Eq. (6) yields

U ¼ 1
2

ZL

0

h
A0

�
u;x

�2 � 2A1u;xf;x þ A2
�
f;x

�2 þ B0
h�
w;x

�2 � 2w;xf

þ ðfÞ2
ii
dx

(7)

where the stiffness coefficients are defined asFig. 1. Geometry and coordinate system of a functionally graded beam.

V. Kahya, M. Turan / Composites Part B 109 (2017) 108e115 109



Download English Version:

https://daneshyari.com/en/article/5021808

Download Persian Version:

https://daneshyari.com/article/5021808

Daneshyari.com

https://daneshyari.com/en/article/5021808
https://daneshyari.com/article/5021808
https://daneshyari.com

