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a b s t r a c t

This paper introduces a new model for calculating the change in time of three-dimensional atomic
configurations. The model is based on the kinetic mean field (KMF) approach, however we have
transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a
stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte
Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open
source program code is provided on http://skmf.euwebsite).Wewill show that the result of one SKMF run
may correspond to the average of several KMC runs. The number of KMC runs is inversely proportional to
the amplitude square of the noise in SKMF. This makes SKMF an ideal tool also for statistical purposes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Mean field approach to the thermodynamics of phase trans-
formations in solids has been well-known for years [1]. It was
developed into Generalized Stochastic Field Kinetic Model by
inclusion of the Langevin noise of conserved (composition) and
non-conserved order parameters. [2,3]. Noise amplitude satisfied
the fluctuation–dissipation theorem and was determined by the
temperature and mobility. Among attempts of non-linear general-
ization to kinetics of diffusion controlled processes—themostwell-
known now (and self-consistent)—is a quasi-one-dimensional
model by George Martin [4]. Martin’s kinetic mean field model
(KMF) was developed from the very beginning for atomic scale (at
the base ofmaster equation) and took into account the dependence
of jump frequencies (and corresponding activation energies) on the
local surrounding of jumping atoms. Note that in Martin’s atom-
istic model one does not need any additional non-conserved or-
der parameter to describe ordering of alloy—it is fully described
by distribution of composition (conserved parameter) at each site.
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Thismodel did not contain noise andwas applied not only to phase
transformations but also to initial stages of diffusion. The most in-
teresting resultswere obtained for systemswith a large asymmetry
of components (large difference between A–A and B–B pair inter-
action energies) [5,6]. In particular, asymmetry may lead to sharp-
ening of composition profile instead of its smoothening (of course,
simultaneously with its movement due to intermixing). Also, for-
mation of intermediate B2 ordered phase in the contact zone of
the couple with sharp asymmetry may start far from stoichiomet-
ric composition [7]. In [8] this approach was modified to 3D case.

All systems treated by KMF, may be alternatively treated by
KMC [9,10]. The main advantage of algorithms based on the
kinetic mean field (KMF) approximation is that they give definite
results. We do not need to run the algorithm several times and
then average them to predict the most probable scenario of a
process. They have, however, a significant drawback: stochastic
fluctuations induced processes cannot be simulated. For instance,
nucleation of precipitates in a supersaturated solid solution
outside of the spinodal will never occur in a mean field model.
Moreover, a random solid solution (described in KMF by absolutely
the same composition at all sites) quenched into the spinodal
region will never decompose. Therefore, if evolution of the system
includes overcoming of some barrier via some saddle point with
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further normal decrease of free energy, the KMF method fails.
Overcoming of the (nucleation) barrier is an important stage of the
first order transformation. Introduction of noise into the kinetic
mean field model provides the possibility of first order phase
transformations but still keeps the advantages of KMF.

2. Methods

The problem of noise is well-known from Brownian motion. It
is important to introduce the stochastic factor into a deterministic
scheme keeping the phase trajectories continuous—excluding the
possibility of jumps in the phase space. Therefore the noise is
prescribed neither to coordinates nor to velocities but to forces (or
accelerations). Force acting on the Brownian particle is represented
as the sum of two forces: viscous and stochastic. Substituting them
into Newton’s second law:

d−⇀v
dt

= −γ−⇀v +

−⇀
F stoch

m

where γ is a damping coefficient. Stochastic force
−⇀
F stoch and cor-

responding stochastic acceleration −⇀a stoch =
−⇀
F stoch/m are treated

as random variables with zero time correlation. Accordingly, the
correlation function has the form of Dirac delta-function:
−⇀a stoch (t) ,

−⇀a stoch

t ′


= Anδ

t − t ′


where <> means averaging over ensemble or – according to er-
godic hypothesis – over time, and An is the amplitude of the noise.
In numeric solution, when the time is discrete with time step dt:
−⇀a stoch (ti) ,

−⇀a stoch

tj


=
An

dt
δi,j.

In such representation the results (average values) will not depend
on the time step. Physically it means that we fix the change of ve-
locity during one time step. Such noise without memory is called a
Langevin noise. Noise amplitude is determined from the constraint
of thermodynamic equilibriumbetween the ensemble of Brownian
particles and the surrounding fluctuating medium.

We will introduce the noise into mean field kinetic equations
taking into account that these equations contain only first time
derivative instead of second one (no inertia). Accordingly, one
might assume that the noise amplitude should be divided not by
dt but by

√
dt . One must also decide the noise of WHAT should be

introduced. Noise (random change) of composition in each site at
each time moment is not the best idea, since it immediately leads
to singularities in the composition change rates. Accordingly, noise
must be prescribed to the REASON of change in composition—to
the microfluxes between neighboring sites. Actually, it is a noise
of jump frequencies. This can be introduced in at least two ways:
random addition to deterministic frequencies or random change
of activation energy in the expression for jump frequency. In this
paper we will demonstrate the first way.

Rate of change of composition in each site i of a three-
dimensional grid is defined according to conservation of matter
and the corresponding local flux balance at each site (in the case
of the exchange mechanism of diffusion):

dci
dt

= −

Z
j=1


ci

1 − cj

 
Γ

mean-field
i,j + δΓ

Lang
i,j


− (1 − ci) cj


Γ

mean-field
j,i + δΓ

Lang
j,i


(1)

where ci is the atomic fraction of A atoms at site i, cj is the atomic
fraction of A atoms on a neighboring site j, and the total number of
nearest neighbors is Z . ci


1 − cj


is in fact the probability that the

site i is occupied by an A atom and a neighboring j site by a B atom;
i.e. an A–B exchange is possible. (In mean field approximation the
correlations are neglected.)Γ mean-field

i,j is the probability of such an
exchange per unit time in mean field approximation, i.e. the jump
rate of A atoms from site i to a neighboring site j and backward
jumps of B atoms (Γ mean-field

j,i is for an exchange of anA and a B atoms
being on site j and i, respectively):

Γ
mean-field
i,j = ν exp


−Qi,j

kT


= ν exp


−

E0 − Ei,j
kT


.

Here k is Boltzmann’s constant, T is the absolute temperature,
Qi,j = E0 − Ei,j, E0 is the saddle point energy, considered con-
stant in this work, and Ei,j = EA

i + EB
j where EA

i =
Z

l=1[clVAA +

(1 − cl) VAB] and EB
j =

Z
n=1 [cnVAB + (1 − cn) VBB] are the inter-

action energies of an A and a B atom on site i and j, respectively;
Vαβ (α, β = A, B) are the pair interaction energies. On introduc-
ingM = (VAA − VBB) /2, V = VAB − (VAA + VBB) /2 and Γ0 = ν exp
{[−E0 + Z (VAB + VBB)] /kT }, Γ mean-field

i,j can also be written as:

Γ
mean-field
i,j = Γ0 exp


Êi,j
kT


(2)

where

Êi,j = (M − V )

Z
l=1

cl + (M + V )

Z
n=1

cn. (3)

Note that V is the regular solid solution parameter – proportional
to the heat of mixing – andM determines the strength of the com-
position dependence of the tracer diffusion coefficient (diffusion
asymmetry). Last but not least, δΓ Lang in Eq. (1) are the noise terms,
which are random additions to the mean field exchange rates:

δΓ
Lang
i,j =

An
√
dt

√
3 (2random − 1) (4)

where random is a uniform random number between 0 and 1. It is
easy to check that the random expression

√
3 (2random − 1) has

the mean squared value equal to 1. Note that thanks to the
√
dt in

denominator of Eq. (4) the asymptotic dispersion of concentration
at fixed An does not depend on dt.

Actually, Eqs. (1)–(4) have to be used to calculate the time
evolution of the composition at each site of a 3D lattice (see
open source code). With An = 0, we perform a fully mean field
calculation, whereas with increasing An the calculation becomes
more and more stochastic, that is the dispersion of composition
becomes higher.

Formally, it is possible to rewrite the master equations for the
vacancy mechanism:

dcA(i)
dt

= −cA(i)
Z

j=1

cv(k)Γ AV
ij + cv(i)

Z
j=1

cA(k)Γ AV
ji

dcB(i)
dt

= −cB(i)
Z

j=1

cv(j)Γ BV
ij + cv(i)

Z
j=1

cB(j)Γ BV
ji ,

dcv(i)
dt

= −cv(i)
Z

j=1

cA(j)Γ AV
ji − cv(i)

Z
j=1

cB(j)Γ BV
ji

+ cA(i)
Z

j=1

cv(j)Γ AV
ij + cB(i)

Z
j=1

cv(j)Γ BV
ij .

Here

Γ AV
ij = νA exp


−

E0 − EA
i

kT


,
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